双调欧几里得旅行商问题的最优算法设计与实现

2024-04-15 12:12

本文主要是介绍双调欧几里得旅行商问题的最优算法设计与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景

双调欧几里得旅行商问题(Double Bitonic TSP)是欧几里得旅行商问题(Euclidean TSP)的一个特殊版本。在标准的欧几里得旅行商问题中,我们需要找到一条最短的路径,这条路径要求访问者从一个城市出发,经过所有其他城市恰好一次,最后返回到起始城市。这个问题是非常复杂的,尤其是当城市数量很多时,可能的路径组合数量是巨大的,因此很难快速找到一个最优解。

而双调欧几里得旅行商问题对路径的走法做了特殊的限制,使得问题变得更加简单。在双调版本中,旅行商不是要访问所有的城市并返回起点,而是只需要从最左边的城市出发,沿着一条向右的路径经过一些城市,到达最右边,然后沿着一条向左的路径返回起点。简单来说,就像是先向右走一段,到达某个点后立即掉头向左走,形成一个类似“V”字型的路径。

这个版本的旅行商问题的特点是路径分为两个部分:向右的部分(递增部分)和向左的部分(递减部分)。这种特殊的走法限制了旅行商的行动,使得问题可以通过更加高效的算法来解决,比如动态规划,而不需要像解决标准欧几里得旅行商问题那样进行复杂的计算。

在解决双调欧几里得旅行商问题(Double Bitonic TSP)时,我们的目标是找到一条从最左边的点开始,严格向右前进至最右边的点,然后严格向左返回起始点的最短路径。这个问题的一个关键特点是,路径的第一部分是递增的(向右),第二部分是递减的(向左)。这种特殊的路径要求使得问题可以通过一种相对简单的动态规划方法来解决,其时间复杂度为O(n²)。

在这里插入图片描述

二、问题描述

给定平面上的n个点,每个点具有唯一的x坐标和y坐标。我们需要找到一条从最左边的点开始,严格向右到达最右边的点,然后严格向左返回起始点的最短路径。这条路径被称为双调巡游路线。

三、算法设计

3.1 动态规划方法

  1. 初始化:创建两个数组rightMinleftMin,它们的长度都为n,用于存储从左到右和从右到左的最小累积距离。

  2. 向右扫描:遍历点集,计算到达每个点的最短路径。对于每个点i,我们从rightMin[i-1]开始,加上从点i-1到点i的距离,然后更新rightMin[i]

  3. 向左扫描:从最右边的点开始,逆向遍历点集,计算到达每个点的最短路径。对于每个点i,我们从leftMin[i+1]开始,加上从点i+1到点i的距离,然后更新leftMin[i]

  4. 计算总距离:对于每个点i,计算rightMin[i] + leftMin[i+1]的值,这代表了从最左边的点开始,经过点i,然后返回起始点的最短路径。我们需要找到这些值中的最小值,这就是我们要找的双调巡游路线的总距离。

  5. 重构路径:一旦我们找到了最短路径的总距离,我们可以通过回溯rightMinleftMin数组来重构实际的路径。

3.2 伪代码

function DoubleBitonicTSP(points):n = length(points)rightMin = new array of size nleftMin = new array of size ntotalDistance = infinity// 初始化for i from 1 to n:rightMin[i] = 0leftMin[i] = 0// 向右扫描for i from 1 to n-1:for j from i to n-1:rightMin[j] = min(rightMin[j], rightMin[j-1] + distance(points[j], points[j-1]))// 向左扫描for i from n-1 down to 1:for j from i to 1:leftMin[j] = min(leftMin[j], leftMin[j+1] + distance(points[j], points[j+1]))// 计算总距离for i from 1 to n-1:totalDistance = min(totalDistance, rightMin[i] + leftMin[i+1])// 重构路径path = reconstructPath(rightMin, leftMin, totalDistance)return path, totalDistance

3.3 C代码实现

#include <stdio.h>
#include <stdlib.h>
#include <math.h>typedef struct {double x;double y;
} Point;double distance(const Point& a, const Point& b) {return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}void doubleBitonicTSP(Point points[], int n, double* totalDistance, Point* path) {double* rightMin = (double*)malloc(n * sizeof(double));double* leftMin = (double*)malloc(n * sizeof(double));for (int i = 0; i < n; i++) {rightMin[i] = 0;leftMin[i] = 0;}// 向右扫描for (int i = 1; i < n; i++) {double minDist = rightMin[i - 1];for (int j = i; j < n; j++) {rightMin[j] = min(minDist, rightMin[j - 1] + distance(points[j], points[j - 1]));minDist = rightMin[j];}}// 向左扫描for (int i = n - 2; i >= 0; i--) {double minDist = leftMin[i + 1];for (int j = i; j < n - 1; j++) {leftMin[j] = min(minDist, leftMin[j + 1] + distance(points[j], points[j + 1]));minDist = leftMin[j];}}*totalDistance = infinity;for (int i = 0; i < n - 1; i++) {*totalDistance = fmin(*totalDistance, rightMin[i] + leftMin[i + 1]);}// 重构路径// ... (此处省略重构路径的代码)free(rightMin);free(leftMin);
}int main() {// 示例:给定点集Point points[] = {{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}};int n = sizeof(points) / sizeof(points[0]);double totalDistance;Point path[2 * n - 1]; // 路径长度为2n - 1doubleBitonicTSP(points, n, &totalDistance, path);// 输出结果printf("Total Distance: %f\n", totalDistance);// 输出路径for (int i = 0; i < 2 * n - 1; i++) {printf("(%f, %f) ", path[i].x, path[i].y);}printf("\n");return 0;
}

3.4 算法分析

时间复杂度:算法的两个主要部分是向右扫描和向左扫描,每个部分都包含一个嵌套循环,它们的时间复杂度都是O(n²)。因此,整个算法的时间复杂度是O(n²)。

空间复杂度:我们使用了两个数组rightMinleftMin,每个数组的大小为n,因此空间复杂度为O(n)。

四、 结论

通过上述算法,我们可以在多项式时间内解决双调欧几里得旅行商问题。这个问题的简化版本通过限制路径的性质,使得原本NP难的旅行商问题变得可解。这种简化在实际应用中非常有用,尤其是在需要快速得到一个近似最优解的情况下。通过动态规划的方法,我们可以有效地找到最短的双调巡游路线,并且可以通过重构算法来确定实际的路径。这种方法不仅适用于理论研究,也适用于实际问题,如物流规划、电路设计等领域。

这篇关于双调欧几里得旅行商问题的最优算法设计与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/905778

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配