漫谈:C语言 C++ 数组的迷惑与混乱 数组参数究竟是什么

2024-04-15 10:36

本文主要是介绍漫谈:C语言 C++ 数组的迷惑与混乱 数组参数究竟是什么,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

初级代码游戏的专栏介绍与文章目录-CSDN博客

我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。

这些代码大部分以Linux为目标但部分代码是纯C++的,可以在任何平台上使用。


目录

数组名究竟是什么

数组用作函数参数究竟发生了什么

传递数组给指针参数究竟发生了什么

总结:数组长度压根不存在

顺路:为什么delete和delete[]不能用错


        C语言设计很失败,起码数组的设计很失败。

        看看这是什么:

int a[5];

        “这是一个int数组,共有5个元素”——回答正确。

int a[5][3];

        “这是一个int二维数组,第一维为5,第二维为3,一共有5X3=15个元素”——不难对吧。

        再深挖一下细节:

int a[5][3];a是什么类型?
a+0是什么类型?
*a是什么类型?

        “a是二维数组,a+0是一维数组,*a是int”——你确定吗?

数组名究竟是什么

        我们知道数组名就是数组的首地址——这个说法有没有问题?既然是首地址,为什么不是一个指针?但是数组名确实可以当作指针来用,比如“a+0”就是指针运算。

        有点晕吗?我们用代码来研究一下这些东西。

        作为前提,我们要知道这两个东西:

  • sizeof() 一个类型或对象的字节大小
  • typeid().name() 一个类型或对象的类型名称(C++)

        以下代码为VS2022的C++代码(64位编译):

#include <stdio.h>
#include <typeinfo>int main()
{int a[5][3];int* p;printf("sizeof(int)       : %2zd : typeid : %s\n", sizeof(int), typeid(int).name());printf("sizeof(p)         : %2zd : typeid : %s\n", sizeof(p), typeid(p).name());printf("sizeof(a)         : %2zd : typeid : %s\n", sizeof(a), typeid(a).name());printf("sizeof(*a)        : %2zd : typeid : %s\n", sizeof(*a), typeid(*a).name());printf("sizeof(a[0])      : %2zd : typeid : %s\n", sizeof(a[0]), typeid(a[0]).name());printf("sizeof(*a[0])     : %2zd : typeid : %s\n", sizeof(*a[0]), typeid(*a[0]).name());printf("sizeof(a+0)       : %2zd : typeid : %s\n", sizeof(a + 0), typeid(a + 0).name());printf("sizeof(*(a+0))    : %2zd : typeid : %s\n", sizeof(*(a + 0)), typeid(*(a + 0)).name());printf("sizeof(a[0][0])   : %2zd : typeid : %s\n", sizeof(a[0][0]), typeid(a[0][0]).name());printf("sizeof(a[0]+0)    : %2zd : typeid : %s\n", sizeof(a[0] + 0), typeid(a[0] + 0).name());printf("sizeof(*(a[0]+0)) : %2zd : typeid : %s\n", sizeof(*(a[0] + 0)), typeid(*(a[0] + 0)).name());
}

        急性子的先看一下结果:

sizeof(int)       :  4 : typeid : int
sizeof(p)         :  8 : typeid : int * __ptr64
sizeof(a)         : 60 : typeid : int [5][3]
sizeof(*a)        : 12 : typeid : int [3]
sizeof(a[0])      : 12 : typeid : int [3]
sizeof(*a[0])     :  4 : typeid : int
sizeof(a+0)       :  8 : typeid : int (* __ptr64)[3]
sizeof(*(a+0))    : 12 : typeid : int [3]
sizeof(a[0][0])   :  4 : typeid : int
sizeof(a[0]+0)    :  8 : typeid : int * __ptr64
sizeof(*(a[0]+0)) :  4 : typeid : int

        看一下结果应该很清楚了。

        由于是64位编译,指针类型的长度都是8,int是4,数组则是int大小乘以元素总数。

        “*a”是什么?数组名作为对象,代表数组,数组名作为指针,则代表指向数组元素的指针。因为这里a是二维数组,所以a作为指针指向的是一维数组。

        数组名什么时候代表数组、什么时候代表指针呢?当数据名做加减的时候就变成了指针。所以“a”和“a+0”是完全不同的东西,一个是“int [5][3]”,一个是“int[3] *”(非正确写法,示意)。

        上面的示例代码输出仔细搞懂,关于数组你就差不多不会迷惑了。

数组用作函数参数究竟发生了什么

        直接上代码(VS2022,64位):

#include <stdio.h>
#include <typeinfo>void f(int x[6][3])
{printf("sizeof(x)         : %2zd : typeid : %s\n", sizeof(x), typeid(x).name());
}
void f2(int x[][3])
{printf("sizeof(x)         : %2zd : typeid : %s\n", sizeof(x), typeid(x).name());
}
void f3(int x[5][2])
{printf("sizeof(x)         : %2zd : typeid : %s\n", sizeof(x), typeid(x).name());
}
void f4(int x[5][])//无法编译,最后一维不能省略
{printf("sizeof(x)         : %2zd : typeid : %s\n", sizeof(x), typeid(x).name());
}
int main()
{int a[5][3];f(a);f2(a);f3(a);//无法编译,参数类型不匹配
}

        有两处不能编译:

        “void f4(int x[5][])”,不允许省略数组最后一维的大小。但是为什么可以省略第一维?这其实暗示了数组名和指针的关系:因为当作指针用的,所以第一维的长度其实无关紧要(所以才可以随便数组越界啊!!!!)。

        “f3(a);”,错误提示:“无法将参数 1 从“int [5][3]”转换为“int [][2]”。 这个信息明确告诉我们,第一维的长度被忽略了,这也能够解释为什么对“void f(int x[6][3])”的调用没有出错,因为第一维的长度根本就被忽略了。

        删除不能编译的代码,运行程序,输出如下:

sizeof(x)         :  8 : typeid : int (* __ptr64)[3]
sizeof(x)         :  8 : typeid : int (* __ptr64)[3]

        哈哈,函数参数其实是个指针!

        但是出错信息用的是数组表示法啊,写编译器的人自己把自己都绕进去了?

传递数组给指针参数究竟发生了什么

#include <stdio.h>
#include <typeinfo>void f(int* x)
{printf("sizeof(x)         : %2zd : typeid : %s\n", sizeof(x), typeid(x).name());
}
void f2(int(*x)[3])
{printf("sizeof(x)         : %2zd : typeid : %s\n", sizeof(x), typeid(x).name());
}
void f3(int* x[3])
{printf("sizeof(x)         : %2zd : typeid : %s\n", sizeof(x), typeid(x).name());
}
int main()
{int a[5][3];f(a[0] + 0);f(a + 0 + 0);//无法将参数 1 从“int (*)[3]”转换为“int *”f((a + 0) + 0);//无法将参数 1 从“int (*)[3]”转换为“int *”f2(a);f3(a);//无法将参数 1 从“int [5][3]”转换为“int *[]”
}

        这个代码有三处不能编译。

        前两处错误信息相同。“二维数组的数组名a做加减就成了指向一维数组的指针,一维数组的指针再做加减不就是指向int的指针吗?”……啊,我再想想……是我想错了啊,原来“指向一维数组的指针”做加减还是“指向一维数组的指针”,指针加减不会改变指针类型,数组名变成指针的时候脱去了一层,再做加减不会继续脱了。

        第三处明显不对的,这样写这是为了显示“int(*x)[3]”和“int* x[3]”的区别,前一个是指向数组的指针,后一个是指针数组,区别要细细品味一下。

        删除不能编译的代码,执行结果如下:

sizeof(x)         :  8 : typeid : int * __ptr64
sizeof(x)         :  8 : typeid : int (* __ptr64)[3]

        输出的是f和f2的参数类型,因为定义的就是指针,所以显示出来没什么区别。

总结:数组长度压根不存在

  •         数组名确实就是指向数组元素的指针。
  •         不仅如此,作为函数的参数,数组被解释为指向数组元素的指针,数组长度(对于多维数组,就是第一维的长度)被完全无视!
  •         C语言压跟没想过控制数组越界。
  •         除了sizeof(数组名)会判断一下数组长度,数组长度也就是初始化的时候用一下。

顺路:为什么delete和delete[]不能用错

        其实new[]申请的内存多了一个整数(假设是4个字节),放数组长度,new[]返回的值是申请的内存地址+4,delete[]知道传递进来的地址前面还有四个字节,可以根据这四个字节来对所有元素逐个执行析构函数,而delete不知道这一点,delete只会释放一个元素。虽然不执行析构函数大部分情况下不会立即导致问题,但是,最终需要释放的内存地址不一样啊(delete[]需要-4),所以用错的话内存管理系统一定要崩溃的。


(这里是结束)

这篇关于漫谈:C语言 C++ 数组的迷惑与混乱 数组参数究竟是什么的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/905581

相关文章

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Java中数组与栈和堆之间的关系说明

《Java中数组与栈和堆之间的关系说明》文章讲解了Java数组的初始化方式、内存存储机制、引用传递特性及遍历、排序、拷贝技巧,强调引用数据类型方法调用时形参可能修改实参,但需注意引用指向单一对象的特性... 目录Java中数组与栈和堆的关系遍历数组接下来是一些编程小技巧总结Java中数组与栈和堆的关系关于

Go语言使用sync.Mutex实现资源加锁

《Go语言使用sync.Mutex实现资源加锁》数据共享是一把双刃剑,Go语言为我们提供了sync.Mutex,一种最基础也是最常用的加锁方式,用于保证在任意时刻只有一个goroutine能访问共享... 目录一、什么是 Mutex二、为什么需要加锁三、实战案例:并发安全的计数器1. 未加锁示例(存在竞态)

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示