漫谈:C语言 C++ 数组的迷惑与混乱 数组参数究竟是什么

2024-04-15 10:36

本文主要是介绍漫谈:C语言 C++ 数组的迷惑与混乱 数组参数究竟是什么,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

初级代码游戏的专栏介绍与文章目录-CSDN博客

我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。

这些代码大部分以Linux为目标但部分代码是纯C++的,可以在任何平台上使用。


目录

数组名究竟是什么

数组用作函数参数究竟发生了什么

传递数组给指针参数究竟发生了什么

总结:数组长度压根不存在

顺路:为什么delete和delete[]不能用错


        C语言设计很失败,起码数组的设计很失败。

        看看这是什么:

int a[5];

        “这是一个int数组,共有5个元素”——回答正确。

int a[5][3];

        “这是一个int二维数组,第一维为5,第二维为3,一共有5X3=15个元素”——不难对吧。

        再深挖一下细节:

int a[5][3];a是什么类型?
a+0是什么类型?
*a是什么类型?

        “a是二维数组,a+0是一维数组,*a是int”——你确定吗?

数组名究竟是什么

        我们知道数组名就是数组的首地址——这个说法有没有问题?既然是首地址,为什么不是一个指针?但是数组名确实可以当作指针来用,比如“a+0”就是指针运算。

        有点晕吗?我们用代码来研究一下这些东西。

        作为前提,我们要知道这两个东西:

  • sizeof() 一个类型或对象的字节大小
  • typeid().name() 一个类型或对象的类型名称(C++)

        以下代码为VS2022的C++代码(64位编译):

#include <stdio.h>
#include <typeinfo>int main()
{int a[5][3];int* p;printf("sizeof(int)       : %2zd : typeid : %s\n", sizeof(int), typeid(int).name());printf("sizeof(p)         : %2zd : typeid : %s\n", sizeof(p), typeid(p).name());printf("sizeof(a)         : %2zd : typeid : %s\n", sizeof(a), typeid(a).name());printf("sizeof(*a)        : %2zd : typeid : %s\n", sizeof(*a), typeid(*a).name());printf("sizeof(a[0])      : %2zd : typeid : %s\n", sizeof(a[0]), typeid(a[0]).name());printf("sizeof(*a[0])     : %2zd : typeid : %s\n", sizeof(*a[0]), typeid(*a[0]).name());printf("sizeof(a+0)       : %2zd : typeid : %s\n", sizeof(a + 0), typeid(a + 0).name());printf("sizeof(*(a+0))    : %2zd : typeid : %s\n", sizeof(*(a + 0)), typeid(*(a + 0)).name());printf("sizeof(a[0][0])   : %2zd : typeid : %s\n", sizeof(a[0][0]), typeid(a[0][0]).name());printf("sizeof(a[0]+0)    : %2zd : typeid : %s\n", sizeof(a[0] + 0), typeid(a[0] + 0).name());printf("sizeof(*(a[0]+0)) : %2zd : typeid : %s\n", sizeof(*(a[0] + 0)), typeid(*(a[0] + 0)).name());
}

        急性子的先看一下结果:

sizeof(int)       :  4 : typeid : int
sizeof(p)         :  8 : typeid : int * __ptr64
sizeof(a)         : 60 : typeid : int [5][3]
sizeof(*a)        : 12 : typeid : int [3]
sizeof(a[0])      : 12 : typeid : int [3]
sizeof(*a[0])     :  4 : typeid : int
sizeof(a+0)       :  8 : typeid : int (* __ptr64)[3]
sizeof(*(a+0))    : 12 : typeid : int [3]
sizeof(a[0][0])   :  4 : typeid : int
sizeof(a[0]+0)    :  8 : typeid : int * __ptr64
sizeof(*(a[0]+0)) :  4 : typeid : int

        看一下结果应该很清楚了。

        由于是64位编译,指针类型的长度都是8,int是4,数组则是int大小乘以元素总数。

        “*a”是什么?数组名作为对象,代表数组,数组名作为指针,则代表指向数组元素的指针。因为这里a是二维数组,所以a作为指针指向的是一维数组。

        数组名什么时候代表数组、什么时候代表指针呢?当数据名做加减的时候就变成了指针。所以“a”和“a+0”是完全不同的东西,一个是“int [5][3]”,一个是“int[3] *”(非正确写法,示意)。

        上面的示例代码输出仔细搞懂,关于数组你就差不多不会迷惑了。

数组用作函数参数究竟发生了什么

        直接上代码(VS2022,64位):

#include <stdio.h>
#include <typeinfo>void f(int x[6][3])
{printf("sizeof(x)         : %2zd : typeid : %s\n", sizeof(x), typeid(x).name());
}
void f2(int x[][3])
{printf("sizeof(x)         : %2zd : typeid : %s\n", sizeof(x), typeid(x).name());
}
void f3(int x[5][2])
{printf("sizeof(x)         : %2zd : typeid : %s\n", sizeof(x), typeid(x).name());
}
void f4(int x[5][])//无法编译,最后一维不能省略
{printf("sizeof(x)         : %2zd : typeid : %s\n", sizeof(x), typeid(x).name());
}
int main()
{int a[5][3];f(a);f2(a);f3(a);//无法编译,参数类型不匹配
}

        有两处不能编译:

        “void f4(int x[5][])”,不允许省略数组最后一维的大小。但是为什么可以省略第一维?这其实暗示了数组名和指针的关系:因为当作指针用的,所以第一维的长度其实无关紧要(所以才可以随便数组越界啊!!!!)。

        “f3(a);”,错误提示:“无法将参数 1 从“int [5][3]”转换为“int [][2]”。 这个信息明确告诉我们,第一维的长度被忽略了,这也能够解释为什么对“void f(int x[6][3])”的调用没有出错,因为第一维的长度根本就被忽略了。

        删除不能编译的代码,运行程序,输出如下:

sizeof(x)         :  8 : typeid : int (* __ptr64)[3]
sizeof(x)         :  8 : typeid : int (* __ptr64)[3]

        哈哈,函数参数其实是个指针!

        但是出错信息用的是数组表示法啊,写编译器的人自己把自己都绕进去了?

传递数组给指针参数究竟发生了什么

#include <stdio.h>
#include <typeinfo>void f(int* x)
{printf("sizeof(x)         : %2zd : typeid : %s\n", sizeof(x), typeid(x).name());
}
void f2(int(*x)[3])
{printf("sizeof(x)         : %2zd : typeid : %s\n", sizeof(x), typeid(x).name());
}
void f3(int* x[3])
{printf("sizeof(x)         : %2zd : typeid : %s\n", sizeof(x), typeid(x).name());
}
int main()
{int a[5][3];f(a[0] + 0);f(a + 0 + 0);//无法将参数 1 从“int (*)[3]”转换为“int *”f((a + 0) + 0);//无法将参数 1 从“int (*)[3]”转换为“int *”f2(a);f3(a);//无法将参数 1 从“int [5][3]”转换为“int *[]”
}

        这个代码有三处不能编译。

        前两处错误信息相同。“二维数组的数组名a做加减就成了指向一维数组的指针,一维数组的指针再做加减不就是指向int的指针吗?”……啊,我再想想……是我想错了啊,原来“指向一维数组的指针”做加减还是“指向一维数组的指针”,指针加减不会改变指针类型,数组名变成指针的时候脱去了一层,再做加减不会继续脱了。

        第三处明显不对的,这样写这是为了显示“int(*x)[3]”和“int* x[3]”的区别,前一个是指向数组的指针,后一个是指针数组,区别要细细品味一下。

        删除不能编译的代码,执行结果如下:

sizeof(x)         :  8 : typeid : int * __ptr64
sizeof(x)         :  8 : typeid : int (* __ptr64)[3]

        输出的是f和f2的参数类型,因为定义的就是指针,所以显示出来没什么区别。

总结:数组长度压根不存在

  •         数组名确实就是指向数组元素的指针。
  •         不仅如此,作为函数的参数,数组被解释为指向数组元素的指针,数组长度(对于多维数组,就是第一维的长度)被完全无视!
  •         C语言压跟没想过控制数组越界。
  •         除了sizeof(数组名)会判断一下数组长度,数组长度也就是初始化的时候用一下。

顺路:为什么delete和delete[]不能用错

        其实new[]申请的内存多了一个整数(假设是4个字节),放数组长度,new[]返回的值是申请的内存地址+4,delete[]知道传递进来的地址前面还有四个字节,可以根据这四个字节来对所有元素逐个执行析构函数,而delete不知道这一点,delete只会释放一个元素。虽然不执行析构函数大部分情况下不会立即导致问题,但是,最终需要释放的内存地址不一样啊(delete[]需要-4),所以用错的话内存管理系统一定要崩溃的。


(这里是结束)

这篇关于漫谈:C语言 C++ 数组的迷惑与混乱 数组参数究竟是什么的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/905581

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中