带头节点单向非循环链表的基本操作(c语言实现)

2024-04-15 04:04

本文主要是介绍带头节点单向非循环链表的基本操作(c语言实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

头节点

头节点是数据结构中的一个概念,特别是在链表结构中。

它通常被设置为链表的第一个节点之前的一个节点,其数据域一般不存储链表中的实际数据,而它的指针域则存储指向链表中第一个实际节点的指针。

头节点的主要作用如下:

  1. 使得对链表的操作更加统一和方便,特别是在链表为空或者需要在链表头部进行插入、删除操作时,头节点的存在可以避免一些特殊情况的处理,从而简化代码并减少出错的可能性。
  2. 当链表为空时,头指针会指向头节点,从而避免头指针为空的情况,这在某种程度上增强了链表结构的健壮性。

需要注意的是,头节点并不是链表所必需的,它主要是为了操作方便而引入的。而头指针则是链表所必需的,它总是指向链表的第一个节点(无论是否存在头节点

带头节点单向不循环链表

我们也是借用结构体来表示一个单链表的定义

typedef int SLTDatatype;typedef struct SListNode
{
SLTDataType data;
struct SListNode*next;
}SLTNode;

 SLTNode是“Singly Linked List Node”的缩写,它表示单链表中的结点。

在“SLTNode”这个缩写中,中间的“T”通常代表“Type”或者“Node”的缩写。在这里,“T”更是为了强调这是一个特定的类型(Type)或者是一个结点(Node)的表示。

链表的基本操作 

带头节点单向不循环链表的基本操作包括:

  1. 创建链表:首先需要定义一个链表结构体,其中每个结点包含一个数据域和一个指向下一个结点的指针。然后,通过动态内存分配(如使用malloc函数)来创建链表的各个结点,并将它们按照顺序连接起来。头结点作为链表的起始点,其指针域指向第一个实际的数据结点。
  2. 清空链表:遍历链表,逐个释放每个结点的内存空间,直到链表为空。注意,需要确保正确处理头结点,避免内存泄漏。
  3. 销毁链表:在清空链表后,还需要释放头结点的内存空间,以完全销毁整个链表。
  4. 头插法:在链表的头部插入新结点。具体操作为:创建一个新结点,将其数据域设置为要插入的数据,然后将其指针域指向头结点的下一个结点,最后更新头结点的指针域,使其指向新结点。
  5. 尾插法:在链表的尾部插入新结点。这需要遍历链表找到最后一个结点,然后创建一个新结点,将其数据域设置为要插入的数据,并将最后一个结点的指针域指向新结点。
  6. 任意位置插入法:在链表的任意位置插入新结点。首先找到要插入位置的前一个结点,然后创建一个新结点,将其数据域设置为要插入的数据,并将其指针域指向要插入位置的原结点,最后更新前一个结点的指针域,使其指向新结点。
  7. 头删法:删除链表的头部结点。具体操作为:将头结点的下一个结点作为新的头结点,然后释放原头结点的内存空间。
  8. 尾删法:删除链表的尾部结点。这需要遍历链表找到倒数第二个结点,然后将其指针域设置为NULL,并释放原尾部结点的内存空间。
  9. 任意位置删除法:删除链表的任意位置结点。首先找到要删除结点的前一个结点,然后更新前一个结点的指针域,使其跳过要删除的结点,并指向要删除结点的下一个结点,最后释放要删除结点的内存空间。
  10. 查询链表中是否有想要的数据:遍历链表,逐个比较结点的数据域与要查询的数据是否相等,若相等则返回该结点的位置或数据,否则继续遍历直到链表结束。

这些基本操作构成了带头节点单向不循环链表的基本功能,可以根据具体需求进行组合和扩展。需要注意的是,在实际编程中,还需要考虑错误处理、边界条件以及内存管理的安全性等问题。

一,链表的初始化

带头节点单向非循环链表和不带头节点单向非循环链表的初始化操作不同,带头节点的需要先搞出头节点来,而另外一个不用

void SLTInit(SLTNode** pphead)
{*pphead = (SLTNode*)malloc(sizeof(SLTNode));//创建头节点if (*pphead == NULL){perror("malloc fail");return;}(*pphead)->next = NULL;//头结点的next置空(*pphead) -> data = 0;//仅仅是为了防止潜在的错误而设定的
}

经过这个操作我们得注意一个点:*pphead代表的是头节点,而不是第一个元素。

第一个元素是(*pphead)->next 

二,创建新结点

SLTNode* BuySLTNode(SLTDataType x)
{SLTNode* newnode = (SLTNode*)malloc(sizeof(SLTNode));//分配内存if (newnode == NULL)//如果内存分配失败{perror("malloc fail");return NULL;}
//给新结点赋值newnode->data = x;newnode->next = NULL;return newnode;
}

三,指定结点的后插操作

//通常情况下,我们是按照*pos是头节点的标准来设计这个操作的
//在指定结点pos后面添加一个元素
// 在指定结点pos后面添加一个元素  
void SLTInsertAfter(SLTNode* pos, SLTDataType x) {  assert(pos != NULL && pos->next != NULL); // 确保pos不为空且pos不是链表的最后一个节点  SLTNode* newnode = BuySLTNode(x);  newnode->next = pos->next;  pos->next = newnode;  
}

四,指定结点的前插操作

// 在指定结点pos前添加一个元素  
void SLTInsertFront(SLTNode** pphead, SLTNode* pos, SLTDataType x) {assert(pphead != NULL && *pphead != NULL && pos != NULL);if (*pphead == pos) {perror("头节点不能前插\n");exit(-1);}SLTNode* cur = *pphead;while (cur->next != pos) {if (cur->next == NULL) {perror("目标结点pos不在链表中\n");exit(-1);}cur = cur->next;}SLTNode* newnode = BuySLTNode(x);newnode->next = pos;cur->next = newnode;
}

五,在链表头部插入新结点

// 在链表头部插入新结点  
void ListInsertFront(SLTNode** pphead, SLTDataType data) {assert(pphead != NULL && *pphead != NULL);SLTNode* newnode = BuySLTNode(data);newnode->next = (*pphead)->next;(*pphead)->next = newnode;
}

六,在链表尾部插入新结点 

// 在链表尾部插入新结点   
void InsertRear(SLTNode** pphead, SLTDataType data) {assert(pphead != NULL && *pphead != NULL);SLTNode* newnode = BuySLTNode(data);SLTNode* tail = *pphead;while (tail->next) {tail = tail->next;}tail->next = newnode;
}

七,删除链表的第一个结点 

// 删除链表的头部结点  
void DeleteFront(SLTNode** pphead) {if ((*pphead)->next == NULL) {//我们要注意*pphead是头节点,不是第一个结点printf("List is empty!\n");return;}SLTNode* p = (*pphead)->next;(*pphead)->next = p->next; // 头结点指向原第二个结点  free(p); // 释放原第一个结点内存  
}

八,删除链表的最后一个结点

// 删除链表的尾部结点  
void DeleteRear(SLTNode** pphead) {if ((*pphead)->next == NULL) {printf("List is empty!\n");return;}SLTNode* p = *pphead;SLTNode* q = NULL;while (p->next->next) { // 找到倒数第二个结点  q = p;p = p->next;}//p为倒数第二个//q为倒数第三个q->next = NULL; // 最后一个结点的前一个结点指向NULL  free(p->next); // 释放原尾部结点内存  
}

九,释放链表

// 释放链表内存  
void FreeList(SLTNode* head) {SLTNode* cur = head;while (cur) {SLTNode* next = cur->next;free(cur);cur = next;}
}

十,打印链表

// 打印链表  
void PrintList(SLTNode* head) {SLTNode* cur = head->next;while (cur) {printf("%d ", cur->data);cur = cur->next;}printf("\n");
}

完整代码

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
typedef int SLTDataType;typedef struct SListNode
{SLTDataType data;struct SListNode* next;
}SLTNode;// 初始化链表  
void SLTInit(SLTNode** pphead) {*pphead = (SLTNode*)malloc(sizeof(SLTNode));if (*pphead == NULL) {perror("malloc fail");exit(EXIT_FAILURE);}(*pphead)->data = 0; // 初始化头结点的data字段  (*pphead)->next = NULL;
}// 创建新结点  
SLTNode* BuySLTNode(SLTDataType x) {SLTNode* newnode = (SLTNode*)malloc(sizeof(SLTNode));if (newnode == NULL) {perror("malloc fail");exit(EXIT_FAILURE);}newnode->data = x;newnode->next = NULL;return newnode;
}// 在指定结点pos后面添加一个元素  
void SLTInsertAfter(SLTNode* pos, SLTDataType x) {assert(pos != NULL && pos->next != NULL); // 确保pos不为空且pos不是链表的最后一个节点  SLTNode* newnode = BuySLTNode(x);newnode->next = pos->next;pos->next = newnode;
}// 在指定结点pos前添加一个元素  
void SLTInsertFront(SLTNode** pphead, SLTNode* pos, SLTDataType x) {assert(pphead != NULL && *pphead != NULL && pos != NULL);if (*pphead == pos) {perror("头节点不能前插\n");exit(-1);}SLTNode* cur = *pphead;while (cur->next != pos) {if (cur->next == NULL) {perror("目标结点pos不在链表中\n");exit(-1);}cur = cur->next;}SLTNode* newnode = BuySLTNode(x);newnode->next = pos;cur->next = newnode;
}// 在链表头部插入新结点  
void ListInsertFront(SLTNode** pphead, SLTDataType data) {assert(pphead != NULL && *pphead != NULL);SLTNode* newnode = BuySLTNode(data);newnode->next = (*pphead)->next;(*pphead)->next = newnode;
}// 在链表尾部插入新结点  
void InsertRear(SLTNode** pphead, SLTDataType data) {assert(pphead != NULL && *pphead != NULL);SLTNode* newnode = BuySLTNode(data);SLTNode* tail = *pphead;while (tail->next) {tail = tail->next;}tail->next = newnode;
}// 释放链表内存  
void FreeList(SLTNode* head) {SLTNode* cur = head;while (cur) {SLTNode* next = cur->next;free(cur);cur = next;}
}// 打印链表  
void PrintList(SLTNode* head) {SLTNode* cur = head->next;while (cur) {printf("%d ", cur->data);cur = cur->next;}printf("\n");
}
// 删除链表的头部结点  
void DeleteFront(SLTNode** pphead) {if ((*pphead)->next == NULL) {//我们要注意*pphead是头节点,不是第一个结点printf("List is empty!\n");return;}SLTNode* p = (*pphead)->next;(*pphead)->next = p->next; // 头结点指向原第二个结点  free(p); // 释放原第一个结点内存  
}// 删除链表的尾部结点  
void DeleteRear(SLTNode** pphead) {if ((*pphead)->next == NULL) {printf("List is empty!\n");return;}SLTNode* p = *pphead;SLTNode* q = NULL;while (p->next->next) { // 找到倒数第二个结点  q = p;p = p->next;}//p为倒数第二个//q为倒数第三个q->next = NULL; // 最后一个结点的前一个结点指向NULL  free(p->next); // 释放原尾部结点内存  
}
// 测试代码  
int main() {SLTNode* head = NULL;SLTInit(&head);ListInsertFront(&head, 1);ListInsertFront(&head, 2);InsertRear(&head, 3);SLTInsertAfter(head->next, 4); // 插入到第二个节点后  SLTInsertFront(&head, head->next->next, 5); // 插入到第三个节点前  PrintList(head);FreeList(head);return 0;
}

这篇关于带头节点单向非循环链表的基本操作(c语言实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904810

相关文章

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1