python实现CSV特征文件转化为libsvm特征文件输入spark中进行机器学习

2024-04-15 03:38

本文主要是介绍python实现CSV特征文件转化为libsvm特征文件输入spark中进行机器学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    今天早早地下班,闲来无事就继续鼓捣spark了,spark计算能力很强之外还有一个很强大的功能就是机器学习,借助于spark平台的高性能以及高计算能力,机器学习算法也被广泛地开发出来,今天在实际使用spark中提供的机器学习算法的时候遇到一个问题就是:

    当前spark读取的都是libsvm格式的数据,我对于libsvm的了解,仅仅停留在他是台大开发出来的独立运行的svm工具而已,对于libsvm格式的数据还是一片空白,之前自己使用的特征文件大多数为:CSV、txt或者是xls和xlsx格式的,所以这里就出现了问题,上网查了一些关于libsvm数据格式的资料如下:

libsvm数据格式
libsvm使用的训练数据和检验数据文件格式如下:
[label] [index1]:[value1] [index2]:[value2] …
[label] [index1]:[value1] [index2]:[value2] …
label  目标值,就是说class(属于哪一类),就是你要分类的种类,通常是一些整数。
index 是有顺序的索引,通常是连续的整数。就是指特征编号,必须按照升序排列
value 就是特征值,用来train的数据,通常是一堆实数组成。
即:
目标值   第一维特征编号:第一维特征值   第二维特征编号:第二维特征值 …
目标值   第一维特征编号:第一维特征值   第二维特征编号:第二维特征值 …
……
目标值   第一维特征编号:第一维特征值   第二维特征编号:第二维特征值 …例如:0 1:0.656 2:5.48 3:54 4:1 5:7 6:2
表示训练用的特征有4维,第一维是0.656,第二维是5.48,第三维是54,第四维是1,第五维是7,第六维是2  目标值是0
注意:训练和测试数据的格式必须相同,都如上所示。测试数据中的目标值是为了计算误差用。

 

      今天尝试了将CSV格式的数据转化为libsvm格式的数据来使用,经过实践尝试发现可以正常工作,下面是转化的脚本(以skearn自带的鸢尾花数据集为例):

def CSV2Libsvm(data='iris.csv',savepath='iris.txt'):'''将CSV数据格式转化为libsvm数据格式'''csv_reader=csv.reader(open(data))data_list=[]for one_line in csv_reader:if str(one_line[0])!='id':data_list.append(one_line)res_list=[]label_dict={'virginica':'2','versicolor':'1','setosa':'0'}for one_list in data_list:one_tmp_list=[label_dict[one_list[-1]]]for i in range(1,len(one_list)-1):one_tmp=str(i)+':'+str(one_list[i])one_tmp_list.append(one_tmp)res_list.append(' '.join(one_tmp_list))with open(savepath,'wb') as f:for one_line in res_list:f.write(one_line.strip()+'\n')

    转化结果如下:

0 1:5.1 2:3.5 3:1.4 4:0.2
0 1:4.9 2:3 3:1.4 4:0.2
0 1:4.7 2:3.2 3:1.3 4:0.2
0 1:4.6 2:3.1 3:1.5 4:0.2
0 1:5 2:3.6 3:1.4 4:0.2
0 1:5.4 2:3.9 3:1.7 4:0.4
0 1:4.6 2:3.4 3:1.4 4:0.3
0 1:5 2:3.4 3:1.5 4:0.2
0 1:4.4 2:2.9 3:1.4 4:0.2
0 1:4.9 2:3.1 3:1.5 4:0.1
0 1:5.4 2:3.7 3:1.5 4:0.2
0 1:4.8 2:3.4 3:1.6 4:0.2
0 1:4.8 2:3 3:1.4 4:0.1
0 1:4.3 2:3 3:1.1 4:0.1
0 1:5.8 2:4 3:1.2 4:0.2
0 1:5.7 2:4.4 3:1.5 4:0.4
0 1:5.4 2:3.9 3:1.3 4:0.4
0 1:5.1 2:3.5 3:1.4 4:0.3
0 1:5.7 2:3.8 3:1.7 4:0.3
0 1:5.1 2:3.8 3:1.5 4:0.3
0 1:5.4 2:3.4 3:1.7 4:0.2
0 1:5.1 2:3.7 3:1.5 4:0.4
0 1:4.6 2:3.6 3:1 4:0.2
0 1:5.1 2:3.3 3:1.7 4:0.5
0 1:4.8 2:3.4 3:1.9 4:0.2
0 1:5 2:3 3:1.6 4:0.2
0 1:5 2:3.4 3:1.6 4:0.4
0 1:5.2 2:3.5 3:1.5 4:0.2
0 1:5.2 2:3.4 3:1.4 4:0.2
0 1:4.7 2:3.2 3:1.6 4:0.2
0 1:4.8 2:3.1 3:1.6 4:0.2
0 1:5.4 2:3.4 3:1.5 4:0.4
0 1:5.2 2:4.1 3:1.5 4:0.1
0 1:5.5 2:4.2 3:1.4 4:0.2
0 1:4.9 2:3.1 3:1.5 4:0.2
0 1:5 2:3.2 3:1.2 4:0.2
0 1:5.5 2:3.5 3:1.3 4:0.2
0 1:4.9 2:3.6 3:1.4 4:0.1
0 1:4.4 2:3 3:1.3 4:0.2
0 1:5.1 2:3.4 3:1.5 4:0.2
0 1:5 2:3.5 3:1.3 4:0.3
0 1:4.5 2:2.3 3:1.3 4:0.3
0 1:4.4 2:3.2 3:1.3 4:0.2
0 1:5 2:3.5 3:1.6 4:0.6
0 1:5.1 2:3.8 3:1.9 4:0.4
0 1:4.8 2:3 3:1.4 4:0.3
0 1:5.1 2:3.8 3:1.6 4:0.2
0 1:4.6 2:3.2 3:1.4 4:0.2
0 1:5.3 2:3.7 3:1.5 4:0.2
0 1:5 2:3.3 3:1.4 4:0.2
1 1:7 2:3.2 3:4.7 4:1.4
1 1:6.4 2:3.2 3:4.5 4:1.5
1 1:6.9 2:3.1 3:4.9 4:1.5
1 1:5.5 2:2.3 3:4 4:1.3
1 1:6.5 2:2.8 3:4.6 4:1.5
1 1:5.7 2:2.8 3:4.5 4:1.3
1 1:6.3 2:3.3 3:4.7 4:1.6
1 1:4.9 2:2.4 3:3.3 4:1
1 1:6.6 2:2.9 3:4.6 4:1.3
1 1:5.2 2:2.7 3:3.9 4:1.4
1 1:5 2:2 3:3.5 4:1
1 1:5.9 2:3 3:4.2 4:1.5
1 1:6 2:2.2 3:4 4:1
1 1:6.1 2:2.9 3:4.7 4:1.4
1 1:5.6 2:2.9 3:3.6 4:1.3
1 1:6.7 2:3.1 3:4.4 4:1.4
1 1:5.6 2:3 3:4.5 4:1.5
1 1:5.8 2:2.7 3:4.1 4:1
1 1:6.2 2:2.2 3:4.5 4:1.5
1 1:5.6 2:2.5 3:3.9 4:1.1
1 1:5.9 2:3.2 3:4.8 4:1.8
1 1:6.1 2:2.8 3:4 4:1.3
1 1:6.3 2:2.5 3:4.9 4:1.5
1 1:6.1 2:2.8 3:4.7 4:1.2
1 1:6.4 2:2.9 3:4.3 4:1.3
1 1:6.6 2:3 3:4.4 4:1.4
1 1:6.8 2:2.8 3:4.8 4:1.4
1 1:6.7 2:3 3:5 4:1.7
1 1:6 2:2.9 3:4.5 4:1.5
1 1:5.7 2:2.6 3:3.5 4:1
1 1:5.5 2:2.4 3:3.8 4:1.1
1 1:5.5 2:2.4 3:3.7 4:1
1 1:5.8 2:2.7 3:3.9 4:1.2
1 1:6 2:2.7 3:5.1 4:1.6
1 1:5.4 2:3 3:4.5 4:1.5
1 1:6 2:3.4 3:4.5 4:1.6
1 1:6.7 2:3.1 3:4.7 4:1.5
1 1:6.3 2:2.3 3:4.4 4:1.3
1 1:5.6 2:3 3:4.1 4:1.3
1 1:5.5 2:2.5 3:4 4:1.3
1 1:5.5 2:2.6 3:4.4 4:1.2
1 1:6.1 2:3 3:4.6 4:1.4
1 1:5.8 2:2.6 3:4 4:1.2
1 1:5 2:2.3 3:3.3 4:1
1 1:5.6 2:2.7 3:4.2 4:1.3
1 1:5.7 2:3 3:4.2 4:1.2
1 1:5.7 2:2.9 3:4.2 4:1.3
1 1:6.2 2:2.9 3:4.3 4:1.3
1 1:5.1 2:2.5 3:3 4:1.1
1 1:5.7 2:2.8 3:4.1 4:1.3
2 1:6.3 2:3.3 3:6 4:2.5
2 1:5.8 2:2.7 3:5.1 4:1.9
2 1:7.1 2:3 3:5.9 4:2.1
2 1:6.3 2:2.9 3:5.6 4:1.8
2 1:6.5 2:3 3:5.8 4:2.2
2 1:7.6 2:3 3:6.6 4:2.1
2 1:4.9 2:2.5 3:4.5 4:1.7
2 1:7.3 2:2.9 3:6.3 4:1.8
2 1:6.7 2:2.5 3:5.8 4:1.8
2 1:7.2 2:3.6 3:6.1 4:2.5
2 1:6.5 2:3.2 3:5.1 4:2
2 1:6.4 2:2.7 3:5.3 4:1.9
2 1:6.8 2:3 3:5.5 4:2.1
2 1:5.7 2:2.5 3:5 4:2
2 1:5.8 2:2.8 3:5.1 4:2.4
2 1:6.4 2:3.2 3:5.3 4:2.3
2 1:6.5 2:3 3:5.5 4:1.8
2 1:7.7 2:3.8 3:6.7 4:2.2
2 1:7.7 2:2.6 3:6.9 4:2.3
2 1:6 2:2.2 3:5 4:1.5
2 1:6.9 2:3.2 3:5.7 4:2.3
2 1:5.6 2:2.8 3:4.9 4:2
2 1:7.7 2:2.8 3:6.7 4:2
2 1:6.3 2:2.7 3:4.9 4:1.8
2 1:6.7 2:3.3 3:5.7 4:2.1
2 1:7.2 2:3.2 3:6 4:1.8
2 1:6.2 2:2.8 3:4.8 4:1.8
2 1:6.1 2:3 3:4.9 4:1.8
2 1:6.4 2:2.8 3:5.6 4:2.1
2 1:7.2 2:3 3:5.8 4:1.6
2 1:7.4 2:2.8 3:6.1 4:1.9
2 1:7.9 2:3.8 3:6.4 4:2
2 1:6.4 2:2.8 3:5.6 4:2.2
2 1:6.3 2:2.8 3:5.1 4:1.5
2 1:6.1 2:2.6 3:5.6 4:1.4
2 1:7.7 2:3 3:6.1 4:2.3
2 1:6.3 2:3.4 3:5.6 4:2.4
2 1:6.4 2:3.1 3:5.5 4:1.8
2 1:6 2:3 3:4.8 4:1.8
2 1:6.9 2:3.1 3:5.4 4:2.1
2 1:6.7 2:3.1 3:5.6 4:2.4
2 1:6.9 2:3.1 3:5.1 4:2.3
2 1:5.8 2:2.7 3:5.1 4:1.9
2 1:6.8 2:3.2 3:5.9 4:2.3
2 1:6.7 2:3.3 3:5.7 4:2.5
2 1:6.7 2:3 3:5.2 4:2.3
2 1:6.3 2:2.5 3:5 4:1.9
2 1:6.5 2:3 3:5.2 4:2
2 1:6.2 2:3.4 3:5.4 4:2.3
2 1:5.9 2:3 3:5.1 4:1.8

    挺有意思,接下来就可以使用libsvm格式的数据进行机器学习模型的使用了。

这篇关于python实现CSV特征文件转化为libsvm特征文件输入spark中进行机器学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904784

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll