LLM生成模型在生物基因DNA应用:HyenaDNA

2024-04-14 17:04

本文主要是介绍LLM生成模型在生物基因DNA应用:HyenaDNA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:
https://github.com/HazyResearch/hyena-dna

整体框架基本就是GPT模型架构
不一样的就是𝖧𝗒𝖾𝗇𝖺𝖣𝖭𝖠 block ,主要是GPT的多重自注意力层引入了cnn在这里插入图片描述在这里插入图片描述

特征向量提取

# python huggingface.py

#@title Single example
import json
import os
import subprocess
# import transformers
from transformers import PreTrainedModeldef inference_single():'''this selects which backbone to use, and grabs weights/ config from HF4 options:'hyenadna-tiny-1k-seqlen'   # fine-tune on colab ok'hyenadna-small-32k-seqlen''hyenadna-medium-160k-seqlen'  # inference only on colab'hyenadna-medium-450k-seqlen'  # inference only on colab'hyenadna-large-1m-seqlen'  # inference only on colab'''# you only need to select which model to use here, we'll do the rest!pretrained_model_name = 'hyenadna-small-32k-seqlen'max_lengths = {'hyenadna-tiny-1k-seqlen': 1024,'hyenadna-small-32k-seqlen': 32768,'hyenadna-medium-160k-seqlen': 160000,'hyenadna-medium-450k-seqlen': 450000,  # T4 up to here'hyenadna-large-1m-seqlen': 1_000_000,  # only A100 (paid tier)}max_length = max_lengths[pretrained_model_name]  # auto selects# data settings:use_padding = Truerc_aug = False  # reverse complement augmentationadd_eos = False  # add end of sentence token# we need these for the decoder head, if usinguse_head = Falsen_classes = 2  # not used for embeddings only# you can override with your own backbone config here if you want,# otherwise we'll load the HF one in Nonebackbone_cfg = Nonedevice = 'cuda' if torch.cuda.is_available() else 'cpu'print("Using device:", device)# instantiate the model (pretrained here)if pretrained_model_name in ['hyenadna-tiny-1k-seqlen','hyenadna-small-32k-seqlen','hyenadna-medium-160k-seqlen','hyenadna-medium-450k-seqlen','hyenadna-large-1m-seqlen']:# use the pretrained Huggingface wrapper insteadmodel = HyenaDNAPreTrainedModel.from_pretrained('./checkpoints',pretrained_model_name,download=True,config=backbone_cfg,device=device,use_head=use_head,n_classes=n_classes,)# from scratchelif pretrained_model_name is None:model = HyenaDNAModel(**backbone_cfg, use_head=use_head, n_classes=n_classes)# create tokenizertokenizer = CharacterTokenizer(characters=['A', 'C', 'G', 'T', 'N'],  # add DNA characters, N is uncertainmodel_max_length=max_length + 2,  # to account for special tokens, like EOSadd_special_tokens=False,  # we handle special tokens elsewherepadding_side='left', # since HyenaDNA is causal, we pad on the left)#### Single embedding example ##### create a sample 450k long, preparesequence = 'ACTG' * int(max_length/4)tok_seq = tokenizer(sequence)tok_seq = tok_seq["input_ids"]  # grab ids# place on device, convert to tensortok_seq = torch.LongTensor(tok_seq).unsqueeze(0)  # unsqueeze for batch dimtok_seq = tok_seq.to(device)# prep model and forwardmodel.to(device)model.eval()with torch.inference_mode():embeddings = model(tok_seq)print(embeddings.shape)  # embeddings here!# # uncomment to run! (to get embeddings)
inference_single()

这篇关于LLM生成模型在生物基因DNA应用:HyenaDNA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903536

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法