【C++算法模板】背包九讲(下):混合背包、二维费用背包、带依赖的背包、背包求方案数、背包求具体方案

2024-04-14 13:36

本文主要是介绍【C++算法模板】背包九讲(下):混合背包、二维费用背包、带依赖的背包、背包求方案数、背包求具体方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1)混合背包
    • 2)二维费用背包
    • 3)带依赖的背包
    • 4)背包求方案数
    • 5)背包求具体方案

1)混合背包

时间复杂度: O ( n 2 l o g 2 ) O(n^2log^2) O(n2log2),空间复杂度: O ( n ) O(n) O(n)

  • 关键点在于将多重背包二进制优化后变成 01 01 01背包和 01 01 01背包一起处理,完全背包单独处理,其实就是混合考了几种背包的处理方式
#include<bits/stdc++.h>
#define x first
#define y secondusing namespace std;typedef long long ll;
typedef pair<int,int> PII;// 解题思路: 三种物品三种放法,运用每组问题的解题思路即可const int N=1e3+5;int n,m;
int f[N];struct Thing {int kind; // 01?完全?多重?int v,w;
};
vector<Thing> things;int main() {cin>>n>>m;for(int i=0;i<n;i++) {int v,w,s;scanf("%d%d%d",&v,&w,&s);// 01背包问题if(s<0) things.push_back({-1,v,w});// 完全背包问题else if(s==0) things.push_back({0,v,w});// 多重背包问题else {for(int k=1;k<=s;k*=2) {s-=k;things.push_back({-1,v*k,w*k}); // 转换成01背包}if(s>0) things.push_back({-1,v*s,w*s});}}// 处理所有thingfor(auto item:things) {// 01背包/多重背包的处理→if(item.kind<0) {for(int j=m;j>=item.v;j--) {f[j]=max(f[j],f[j-item.v]+item.w);}}// 完全背包的处理→else {for(int j=item.v;j<=m;j++) {f[j]=max(f[j],f[j-item.v]+item.w);}}}cout<<f[m]<<endl;return 0;
}

2)二维费用背包

时间复杂度: O ( n 3 ) O(n^3) O(n3),空间复杂度: O ( n 2 ) O(n^2) O(n2)

  • 除了体积限制外加入了重量限制,处理方法和 01 01 01背包完全类似,只不过多了一重循环,和一维空间
#include<bits/stdc++.h>
#define x first
#define y secondusing namespace std;typedef long long ll;
typedef pair<int,int> PII;// 解题思路: const int N=1e3+5;
const int V=1e2+5; // 最大体积
const int M=1e2+5; // 最大载重
int n,v,m;
int f[V][M]; // 体积是i重量是j的最大价值int main() {cin>>n>>v>>m;for(int i=1;i<=n;i++) {// 边输入边处理int a,b,c;scanf("%d%d%d",&a,&b,&c);for(int j=v;j>=a;j--) {for(int k=m;k>=b;k--) {f[j][k]=max(f[j][k],f[j-a][k-b]+c);}}}cout<<f[v][m]<<endl;return 0;
}

3)带依赖的背包

时间复杂度: O ( n 3 ) O(n^3) O(n3),空间复杂度: O ( n ) O(n) O(n)

#include<bits/stdc++.h>
#define x first
#define y secondusing namespace std;typedef long long ll;
typedef pair<int,int> PII;// 解题思路: 选子物品前必须要选父物品const int N=1e2+5;
int n,m;
int h[N],e[N],ne[N],idx;
int v[N],w[N];
int f[N][N]; // f[i][j]:在选节点j的情况下总体积<=j,以i为根的子树的最大总收益是多少?// 每个子节点是一个物品组,每个组里面只能选一个,就变成了分组背包问题void add(int a,int b) {e[idx]=b;ne[idx]=h[a];h[a]=idx++;
}void dfs(int u) {// 循环物品组for(int i=h[u];i!=-1;i=ne[i]) {int son=e[i]; dfs(son);// 枚举背包容量,因为一定要选择根节点// 所以j-v[u],01背包从大到小枚举for(int j=m-v[u];j>=0;j--) {// 枚举决策,这个组里面选哪个// 枚举这个子节点用哪个体积for(int k=0;k<=j;k++) {f[u][j]=max(f[u][j],f[u][j-k]+f[son][k]);}}}// 如果体积大于等于当前物品体积,把之前空出来的位置把物品价值加进去for(int i=m;i>=v[u];i--) f[u][i]=f[u][i-v[u]]+w[u];// 如果体积小于当前物品体积,整棵子树一个点都不能选for(int i=0;i<v[u];i++) f[u][i]=0;
}int main() {memset(h,-1,sizeof h);cin>>n>>m;int root;for(int i=1;i<=n;i++) {int p;scanf("%d%d%d",&v[i],&w[i],&p); // p表示依赖关系if(p==-1) root=i; // -1表示根节点else add(p,i);}dfs(root);cout<<f[root][m]<<endl; // 根节点为root背包最大容量为m的最大价值return 0;
}

4)背包求方案数

时间复杂度: O ( n 2 ) O(n^2) O(n2),空间复杂度: O ( n ) O(n) O(n)

  • 01 01 01 背包的基础上要求求出能得到最大价值的方案数共有多少种
  • 若初始化 f [ 1 ] f[1] f[1] f [ m ] f[m] f[m],那么 f [ j ] f[j] f[j] 代表的是背包容量不超过 j j j 时所得最大价值,为了便于统计,我们想让 f [ j ] f[j] f[j] 表示背包容量恰为 j j j 时的最大价值,所以需要把 f [ 1 ] f[1] f[1] f [ m ] f[m] f[m] 初始化为 − I N F -INF INF
  • 因为最优解不一定在 f [ m ] f[m] f[m] 空间不一定用完,所以还需要枚举出最大价值,再把最大价值对应的方案数累加起来,才是最终结果
#include<bits/stdc++.h>
#define x first
#define y secondusing namespace std;typedef long long ll;
typedef pair<int,int> PII;// 解题思路: 求最大价值的选法有多少种
// 为了便于统计,我们要让物理意义变为背包容量恰为j时的最大价值
// 所以要初始化为负无穷const int N=1e3+5;
const int mod=1e9+7; // 答案很大
const int INF=1e6;int n,m;
int f[N],g[N];int main() {cin>>n>>m;g[0]=1; // 初始化,背包容量为0时方案数是1// 背包容量为[1,m]时最大价值初始化为-INFfor(int i=1;i<=m;i++) {f[i]=-INF;}for(int i=0;i<n;i++) {int v,w;cin>>v>>w;for(int j=m;j>=v;j--) {// 选与不选的最大值int t=max(f[j],f[j-v]+w);int s=0;// 看哪种方案更优,把其方案数拿过来// 因为有可能f[j]=f[j-v]+w,即从两个状态转移过来都可以// 所以写两个并列的if,可以都加if(t==f[j]) s+=g[j];if(t==f[j-v]+w) s+=g[j-v];if(s>=mod) s-=mod; // 手动取模f[j]=t;g[j]=s;}}int maxw=0;// 求最优解,最优解不一定是m,因为物理意义变了for(int i=0;i<=m;i++) maxw=max(maxw,f[i]);int res=0;// 求总的方案数for(int i=0;i<=m;i++) {if(maxw==f[i]) {res+=g[i];if(res>=mod) res-=mod;}}cout<<res<<endl;return 0;
}

5)背包求具体方案

时间复杂度: O ( n 2 ) O(n^2) O(n2),空间复杂度: O ( n 2 ) O(n^2) O(n2)

#include<bits/stdc++.h>
#define x first
#define y secondusing namespace std;typedef long long ll;
typedef pair<int,int> PII;// 解题思路: 要求输出字典序最小的一种选法(123<31)按位比
// 看f[n][m]是从哪个状态转移过来的,若为f[n-1][m](没选),若为f[n-1][m-v[i]]+w[i](选了)
// 贪心求,如果能选第一个物品,那么必须选第一个物品,这样字典序是最小的,前面的物品能选则选
// 从后往前推,求方案从前往后推const int N=1e3+5;
int n,m;
int v[N],w[N],f[N][N]; // 前i个物品中背包容量不超过j的方案int main() {cin>>n>>m;for(int i=1;i<=n;i++) {scanf("%d%d",&v[i],&w[i]);	}// 从后往前推,这样求出来的方案才是字典序最小的for(int i=n;i>=1;i--) {// 二维for(int j=0;j<=m;j++) {f[i][j]=f[i+1][j];if(j>=v[i]) {f[i][j]=max(f[i][j],f[i+1][j-v[i]]+w[i]);}}}int i=1,j=m; // 从后往前推,最大值是f[1][m]// 从前往后推最大值while(i<=n) {if(j>=v[i] && f[i+1][j-v[i]]+w[i]>=f[i+1][j]) {cout<<i<<' ';j-=v[i];i++;} else {i++;}}return 0;
}

这篇关于【C++算法模板】背包九讲(下):混合背包、二维费用背包、带依赖的背包、背包求方案数、背包求具体方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903120

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

使用Java填充Word模板的操作指南

《使用Java填充Word模板的操作指南》本文介绍了Java填充Word模板的实现方法,包括文本、列表和复选框的填充,首先通过Word域功能设置模板变量,然后使用poi-tl、aspose-words... 目录前言一、设置word模板普通字段列表字段复选框二、代码1. 引入POM2. 模板放入项目3.代码

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

python依赖管理工具UV的安装和使用教程

《python依赖管理工具UV的安装和使用教程》UV是一个用Rust编写的Python包安装和依赖管理工具,比传统工具(如pip)有着更快、更高效的体验,:本文主要介绍python依赖管理工具UV... 目录前言一、命令安装uv二、手动编译安装2.1在archlinux安装uv的依赖工具2.2从github