R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

本文主要是介绍R数据分析:如何做数据的非线性关系,多项式回归的做法和解释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性关系其实是最常见也是最有效,同时还是最好解释的,不过变量间复杂的关系我们用多项式回归做出来可能会更加的准确。刚好有位粉丝的数据需要用到多项式回归,今天就给大家写写。

要理解非线性关系,首先我们看看线性关系,假设情况如下:商品的价格为p,销售量为q,总价为y,那么qy之间就是线性关系:

p <- 0.5
q <- seq(0,100,1)
y <- p*q
plot(q,y,type='l',col='red',main='线性关系')

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

但是考虑现实中的情况:一个商品本来价格p是0.5,买的人多了价格会上涨,此时线性关系不成了哦:

y <- 450 + p*(q-10)^3
plot(q,y,type='l',col='navy',main='Nonlinear relationship',lwd=3)

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

如果你得数据确实不是线性关系,就得考虑数据转化或者拟合多项式回归。

数据模拟

为了更好地给大家演示,我们需要模拟一个数据集出来:

q <- seq(from=0, to=20, by=0.1)
y <- 500 + 0.4 * (q-10)^3
noise <- rnorm(length(q), mean=10, sd=80)
noisy.y <- y + noise

上面的代码首先模拟200个销售量,和相应的总价y,同时还给y加了一点点噪声。

我们把模拟数据画出来瞅瞅:

plot(q,noisy.y,col='deepskyblue4',xlab='q',main='Observed data')
lines(q,y,col='firebrick1',lwd=3)

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

注意我们用lines这个方法给数据串了一条趋势线,可以很明显的看出来我们的数据不是线性关系。

多项式回归

那么对于我们的数据我可以做如下的多项式回归:

model <- lm(noisy.y ~ poly(q,3))
model <- lm(noisy.y ~ x + I(X^2) + I(X^3))

上面两种方法都是一个道理,但是第一种可以很好的避免多重共线性问题,你想嘛,x的平方和x的三次方肯定高度相关啊。所以大家用第一种方法哦,输出结果如下:

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

上面的结果中没有系数的置信区间,我们可以:

confint(model, level=0.95)

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

我么还可以画出来模型的残差图:

plot(fitted(model),residuals(model))

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

总的来说,我们的模型的R方为0.77,q的一次项和3次项都是有统计学意义的,模型还不错。

是不是可以用这个模型做预测呢?

这又涉及到机器学习了,往下看:

我们可以用训练的这个模型来预测我们的原始数据:

predicted.intervals <- predict(model,data.frame(x=q),interval='confidence',level=0.99)

你去查看predicted.intervals的值,你可以看到我们200个数据的预测值和置信区间。

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

最好还是给大家可视化一下,我们打算把原始的趋势线和我们的置信区间的上下限都画在同一个图上:

lines(q,predicted.intervals[,1],col='green',lwd=3)
lines(q,predicted.intervals[,2],col='black',lwd=1)
lines(q,predicted.intervals[,3],col='black',lwd=1)

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

可以看到上图中,我们的砖红色的线基本都在置信区间的上下限范围内,证明了模型不错。

 

这篇关于R数据分析:如何做数据的非线性关系,多项式回归的做法和解释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/902443

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语