人工智能|机器学习——基于机器学习的信用卡办卡意愿模型预测项目

本文主要是介绍人工智能|机器学习——基于机器学习的信用卡办卡意愿模型预测项目,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景介绍

在金融领域,了解客户的信用卡办卡意愿对于银行和金融机构至关重要。借助机器学习技术,我们可以根据客户的历史数据和行为模式预测其是否有办理信用卡的倾向。本项目通过Python中的机器学习库,构建了两个常用的分类模型:随机森林和逻辑回归,来预测客户的信用卡办卡意愿,通过使用Django框架通过构架可视化的方式分析数据。

二、数据准备

首先,我们从MySQL数据库中获取处理后的客户数据。这些数据经过预处理和特征工程,包含了客户的各种特征信息,以及是否流失的标签。

# 数据库连接和数据获取
import pandas as pd
import pymysql
from data.mapper import host, user, password, database# 连接MySQL数据库
conn = pymysql.connect(host=host,user=user,password=password,database=database
)# 从MySQL数据库中读取处理后的数据
query = "SELECT * FROM processed_customer_data"
df = pd.read_sql(query, conn)# 关闭数据库连接
conn.close()

三、模型训练与评估

3.1 随机森林模型

随机森林是一种集成学习方法,通过构建多个决策树来进行分类或回归。我们使用随机森林模型对客户的信用卡办卡意愿进行预测,并评估模型性能。

# 随机森林模型训练与评估
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix# 特征与标签分割
X = df.drop(columns=['Attrition_Flag'])
y = df['Attrition_Flag']# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2)# 随机森林模型训练
rf_model = RandomForestClassifier()
rf_model.fit(X_train, y_train)# 模型预测
y_pred = rf_model.predict(X_test)# 模型评估
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)

3.2 逻辑回归模型

逻辑回归是一种线性模型,常用于二分类问题。我们同样使用逻辑回归模型对客户的信用卡办卡意愿进行预测,并评估模型性能。

# 逻辑回归模型训练与评估
from sklearn.linear_model import LogisticRegression# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 逻辑回归模型训练
logreg_model = LogisticRegression()
logreg_model.fit(X_train, y_train)# 模型预测
y_pred = logreg_model.predict(X_test)# 模型评估
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)

四、数据可视化

我们使用Django作为后端框架实现数据可视化,通过Pyecharts库创建多种图表,以更直观地展示数据分布和模型评估结果。

# Django视图函数中的数据可视化
from django.shortcuts import render
from pyecharts.charts import Bar, Pie, Line
from pyecharts import options as opts
from pyecharts.globals import CurrentConfig, ThemeTypefrom web.service.task_service import get_custormer_age, get_income_category, get_education_level, get_credit_limit, \get_months_inactive_12_mondef bar_chart(request):# 获取客户年龄分布数据x, y = get_custormer_age()line = (Line().add_xaxis([str(age) for age in x]).add_yaxis("Count", y).set_global_opts(title_opts=opts.TitleOpts(title="客户年龄分布图"),xaxis_opts=opts.AxisOpts(name="Age"),yaxis_opts=opts.AxisOpts(name="Count"),))# 获取客户信用卡额度分布数据x1, y1 = get_credit_limit()line1 = (Line().add_xaxis([str(age) for age in x1]).add_yaxis("Count", y1).set_global_opts(title_opts=opts.TitleOpts(title="客户信用卡额度top10分布图"),xaxis_opts=opts.AxisOpts(name="Age"),yaxis_opts=opts.AxisOpts(name="Count"),))# 获取客户非活跃月数分布数据bar1 = Bar()x1, y1 = get_months_inactive_12_mon()bar1.add_xaxis(x1)bar1.add_yaxis("客户去年非活跃月数分布", y1)# 获取客户收入范围趋势数据bar = Bar()x, y = get_income_category()bar.add_xaxis(x)bar.add_yaxis("收入范围趋势图", y)# 获取客户教育水平分布数据pie = Pie()tuple = get_education_level()pie.add("教育水平分布图", tuple)# 获取图表的JavaScript代码line_js = line.render_embed()bar_js = bar.render_embed()pie_js = pie.render_embed()bar1_js = bar1.render_embed()line1_js = line1.render_embed()return render(request, 'charts/bar_chart.html', {'line': line_js, 'bar': bar_js, 'pie': pie_js, 'line1': line1_js, 'bar1': bar1_js})

五、总结

通过本项目,我们使用了机器学习模型预测了客户的信用卡办卡意愿,并通过Django实现了数据的可视化展示。这使得银行和金融机构能够更好地理解客户行为模式,并做出相应的业务决策。

这篇关于人工智能|机器学习——基于机器学习的信用卡办卡意愿模型预测项目的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901849

相关文章

vite搭建vue3项目的搭建步骤

《vite搭建vue3项目的搭建步骤》本文主要介绍了vite搭建vue3项目的搭建步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1.确保Nodejs环境2.使用vite-cli工具3.进入项目安装依赖1.确保Nodejs环境

idea+spring boot创建项目的搭建全过程

《idea+springboot创建项目的搭建全过程》SpringBoot是Spring社区发布的一个开源项目,旨在帮助开发者快速并且更简单的构建项目,:本文主要介绍idea+springb... 目录一.idea四种搭建方式1.Javaidea命名规范2JavaWebTomcat的安装一.明确tomcat

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

MyCat分库分表的项目实践

《MyCat分库分表的项目实践》分库分表解决大数据量和高并发性能瓶颈,MyCat作为中间件支持分片、读写分离与事务处理,本文就来介绍一下MyCat分库分表的实践,感兴趣的可以了解一下... 目录一、为什么要分库分表?二、分库分表的常见方案三、MyCat简介四、MyCat分库分表深度解析1. 架构原理2. 分

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

linux查找java项目日志查找报错信息方式

《linux查找java项目日志查找报错信息方式》日志查找定位步骤:进入项目,用tail-f实时跟踪日志,tail-n1000查看末尾1000行,grep搜索关键词或时间,vim内精准查找并高亮定位,... 目录日志查找定位在当前文件里找到报错消息总结日志查找定位1.cd 进入项目2.正常日志 和错误日

在.NET项目中嵌入Python代码的实践指南

《在.NET项目中嵌入Python代码的实践指南》在现代开发中,.NET与Python的协作需求日益增长,从机器学习模型集成到科学计算,从脚本自动化到数据分析,然而,传统的解决方案(如HTTPAPI或... 目录一、CSnakes vs python.NET:为何选择 CSnakes?二、环境准备:从 Py

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建