教你用TensorFlow和自编码器模型生成手写数字(附代码)

2024-04-14 01:38

本文主要是介绍教你用TensorFlow和自编码器模型生成手写数字(附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


来源:机器之心

本文长度为1876字,建议阅读4分钟

本文介绍了如何使用 TensorFlow 实现变分自编码器(VAE)模型,并通过简单的手写数字生成案例一步步引导读者实现这一强大的生成模型。


自编码器是一种能够用来学习对输入数据高效编码的神经网络。若给定一些输入,神经网络首先会使用一系列的变换来将数据映射到低维空间,这部分神经网络就被称为编码器。


然后,网络会使用被编码的低维数据去尝试重建输入,这部分网络称之为解码器。我们可以使用编码器将数据压缩为神经网络可以理解的类型。然而自编码器很少用做这个目的,因为通常存在比它更为有效的手工编写的算法(例如 jpg 压缩)。


此外,自编码器还被经常用来执行降噪任务,它能够学会如何重建原始图像。


什么是变分自编码器?


有很多与自编码器相关的有趣应用。


其中之一被称为变分自编码器(variational autoencoder)。使用变分自编码器不仅可以压缩数据--还能生成自编码器曾经遇到过的新对象。


使用通用自编码器的时候,我们根本不知道网络所生成的编码具体是什么。虽然我们可以对比不同的编码对象,但是要理解它内部编码的方式几乎是不可能的。这也就意味着我们不能使用编码器来生成新的对象。我们甚至连输入应该是什么样子的都不知道。


而我们用相反的方法使用变分自编码器。我们不会尝试着去关注隐含向量所服从的分布,只需要告诉网络我们想让这个分布转换为什么样子就行了。


通常情况,我们会限制网络来生成具有单位正态分布性质的隐含向量。然后,在尝试生成数据的时候,我们只需要从这种分布中进行采样,然后把样本喂给解码器就行,解码器会返回新的对象,看上去就和我们用来训练网络的对象一样。


下面我们将介绍如何使用 Python 和 TensorFlow 实现这一过程,我们要教会我们的网络来画 MNIST 字符。


第一步加载训练数据


首先我们来执行一些基本的导入操作。TensorFlow 具有非常便利的函数来让我们能够很容易地访问 MNIST 数据集。

import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt
%matplotlib inlinefrom tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data')

定义输入数据和输出数据


MNIST 图像的维度是 28*28 像素,只有单色通道。我们的输入数据 X_in 是一批一批的 MNIST 字符,网络会学习如何重建它们。然后在一个占位符 Y 中输出它们,输出和输入具有相同的维度。


Y_flat 将会在后面计算损失函数的时候用到,keep_prob 将会在应用 dropout 的时候用到(作为一种正则化的方法)。在训练的过程中,它的值会设为 0.8,当生成新数据的时候,我们不使用 dropout,所以它的值会变成 1。


lrelu 函数需要自及定义,因为 TensorFlow 中并没有预定义一个 Leaky ReLU 函数。

tf.reset_default_graph()batch_size = 64X_in = tf.placeholder(dtype=tf.float32, shape=[None, 28, 28], name='X')
Y    = tf.placeholder(dtype=tf.float32, shape=[None, 28, 28], name='Y')
Y_flat = tf.reshape(Y, shape=[-1, 28 * 28])
keep_prob = tf.placeholder(dtype=tf.float32, shape=(), name='keep_prob')dec_in_channels = 1n_latent = 8reshaped_dim = [-1, 7, 7, dec_in_channels]
inputs_decoder = 49 * dec_in_channels / 2def lrelu(x, alpha=0.3):    return tf.maximum(x, tf.multiply(x, alpha))


定义编码器


因为我们的输入是图像,所以使用一些卷积变换会更加合理。最值得注意的是我们在编码器中创建了两个向量,因为编码器应该创建服从高斯分布的对象。


  • 一个是均值向量

  • 一个是标准差向量



在后面你会看到,我们是如何「强制」编码器来保证它确实生成 了服从正态分布的数据点,我们可以把将会被输入到解码器中的编码值表示为 z。在计算损失函数的时候,我们会需要我们所选分布的均值和标准差。

def encoder(X_in, keep_prob):activation = lrelu    with tf.variable_scope("encoder", reuse=None):X = tf.reshape(X_in, shape=[-1, 28, 28, 1])x = tf.layers.conv2d(X, filters=64, kernel_size=4, strides=2, padding='same', activation=activation)x = tf.nn.dropout(x, keep_prob)x = tf.layers.conv2d(x, filters=64, kernel_size=4, strides=2, padding='same', activation=activation)x = tf.nn.dropout(x, keep_prob)x = tf.layers.conv2d(x, filters=64, kernel_size=4, strides=1, padding='same', activation=activation)x = tf.nn.dropout(x, keep_prob)x = tf.contrib.layers.flatten(x)mn = tf.layers.dense(x, units=n_latent)sd       = 0.5 * tf.layers.dense(x, units=n_latent)            epsilon = tf.random_normal(tf.stack([tf.shape(x)[0], n_latent])) z  = mn + tf.multiply(epsilon, tf.exp(sd))        return z, mn, sd


定义解码器


解码器不会关心输入值是不是从我们定义的某个特定分布中采样得到的。它仅仅会尝试重建输入图像。最后,我们使用了一系列的转置卷积(transpose convolution)。

def decoder(sampled_z, keep_prob):    with tf.variable_scope("decoder", reuse=None):x = tf.layers.dense(sampled_z, units=inputs_decoder, activation=lrelu)x = tf.layers.dense(x, units=inputs_decoder * 2 + 1, activation=lrelu)x = tf.reshape(x, reshaped_dim)x = tf.layers.conv2d_transpose(x, filters=64, kernel_size=4, strides=2, padding='same', activation=tf.nn.relu)x = tf.nn.dropout(x, keep_prob)x = tf.layers.conv2d_transpose(x, filters=64, kernel_size=4, strides=1, padding='same', activation=tf.nn.relu)x = tf.nn.dropout(x, keep_prob)x = tf.layers.conv2d_transpose(x, filters=64, kernel_size=4, strides=1, padding='same', activation=tf.nn.relu)x = tf.contrib.layers.flatten(x)x = tf.layers.dense(x, units=28*28, activation=tf.nn.sigmoid)img = tf.reshape(x, shape=[-1, 28, 28])        return img


现在,我们将两部分连在一起。

sampled, mn, sd = encoder(X_in, keep_prob)
dec = decoder(sampled, keep_prob)

计算损失函数,并实施一个高斯隐藏分布


为了计算图像重构的损失函数,我们简单地使用了平方差(这有时候会使图像变得有些模糊)。这个损失函数还结合了 KL 散度,这确保了我们的隐藏值将会从一个标准分布中采样。关于这个主题,如果想要了解更多,可以看一下这篇文章(https://jaan.io/what-is-variational-autoencoder-vae-tutorial/)

unreshaped = tf.reshape(dec, [-1, 28*28])
img_loss = tf.reduce_sum(tf.squared_difference(unreshaped, Y_flat), 1)
latent_loss = -0.5 * tf.reduce_sum(1.0 + 2.0 * sd - tf.square(mn) - tf.exp(2.0 * sd), 1)
loss = tf.reduce_mean(img_loss + latent_loss)
optimizer = tf.train.AdamOptimizer(0.0005).minimize(loss)
sess = tf.Session()
sess.run(tf.global_variables_initializer())


训练网络


现在我们终于可以训练我们的 VAE 了!


每隔 200 步,我们会看一下当前的重建是什么样子的。大约在处理了 2000 次迭代后,大多数重建看上去是挺合理的。

for i in range(30000):batch = [np.reshape(b, [28, 28]) for b in mnist.train.next_batch(batch_size=batch_size)[0]]sess.run(optimizer, feed_dict = {X_in: batch, Y: batch, keep_prob: 0.8})        if not i % 200:ls, d, i_ls, d_ls, mu, sigm = sess.run([loss, dec, img_loss, dst_loss, mn, sd], feed_dict = {X_in: batch, Y: batch, keep_prob: 1.0})plt.imshow(np.reshape(batch[0], [28, 28]), cmap='gray')plt.show()plt.imshow(d[0], cmap='gray')plt.show()print(i, ls, np.mean(i_ls), np.mean(d_ls))


生成新数据


最惊人的是我们现在可以生成新的字符了。最后,我们仅仅是从一个单位正态分布里面采集了一个值,输入到解码器。生成的大多数字符都和人类手写的是一样的。

randoms = [np.random.normal(0, 1, n_latent) for _ in range(10)]
imgs = sess.run(dec, feed_dict = {sampled: randoms, keep_prob: 1.0})
imgs = [np.reshape(imgs[i], [28, 28]) for i in range(len(imgs))]for img in imgs:plt.figure(figsize=(1,1))plt.axis('off')plt.imshow(img, cmap='gray')


一些自动生成的字符


总结


这是关于 VAE 应用一个相当简单的例子。但是可以想象一下更多的可能性!神经网络可以学习谱写音乐,它们可以自动地创建对书籍、游戏的描述。借用创新思维,VAE 可以为一些新颖的项目开创空间。


全部 VAE 代码:

https://github.com/FelixMohr/Deep-learning-with-Python/blob/master/VAE.ipynb

原文链接:

https://medium.com/towards-data-science/teaching-a-variational-autoencoder-vae-to-draw-mnist-characters-978675c95776


编辑:王璇

这篇关于教你用TensorFlow和自编码器模型生成手写数字(附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901773

相关文章

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim