数据蒋堂 | JOIN提速 - 外键指针化

2024-04-14 01:32

本文主要是介绍数据蒋堂 | JOIN提速 - 外键指针化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


来源:数据蒋堂

作者:蒋步星

本文长度为1520,建议阅读4分钟

本文为你讲解重新定义JOIN后如何能够提高运算性能。

我们来看重新定义JOIN后如何能够提高运算性能,先看外键式JOIN的情况。

设有两个表:


其中sales表中的productid是指向products表中id字段的外键,id是products表的主键。

现在我们想计算销售额有多少(为简化讨论,就不再设定条件了),用SQL写出来:

SELECT SUM(sales.quantity*products.price) FROM sales JOIN products ON sales.productid=products.id

基于笛卡尔积定义的JOIN,原则上只能两层循环全遍历来计算,不过这个计算量实在太大,关系数据库一般采用HASH分段方法优化,即分别计算两表关联字段的HASH值,将HASH同值记录拼到一起再做小范围遍历。网上有很多文章介绍这个算法,这里就不详述了。这样做后的复杂度能显著降低,但仍然要做多次HASH值计算和比对。


我们再用前述简化的JOIN语法写出这个运算:

SELECT SUM(quantity*productid.price) FROM sales

而这个写法其实也预示了它还可以有更好的优化方案,下面来看看怎样实现。

我们先考虑全内存的情况,如果所有数据都能够装入内存,我们可以实现外键指针化

将事实表sales中的外键字段productid,转换成指向维表products记录的指针,即productid的取值就已经是某个products表中的记录,那么就可以直接引用记录的字段进行计算了。

用SQL不方便描述这个运算的细节过程了,我们采用过程式语法、并用文件作为数据源来说明计算过程:


上面算法中,第2步建主键索引一般也是用HASH办法,对id计算HASH值,第4步转换指针还是计算productid的HASH值与P的HASH索引表对比。这样的话,如果只做一次关联运算,指针化的方案和传统HASH分段方案的计算量基本上一样,没有根本优势。

但不同的是,如果数据能在内存中放下,这个指针一旦建立起来之后可以复用,也就是说第2和第4步只要做一次,下次再做关于这两个字段的关联运算时就不必再计算HASH值和比对了,性能就能大幅提高。而关系代数体系下没有对象指针这个概念,并且基于笛卡尔积定义的JOIN运算也无法假定外键指向记录的唯一性,没办法使用外键指针化的方法,每次关联时都要计算HASH值并比对。

而且,如果事实表中有多个外键分别指向多个维表,传统的HASH分段JOIN方案每次只能解析掉一个,有N个JOIN要执行N遍动作,每次关联后都需要保持中间结果供下一轮使用,计算过程复杂得多,数据也会被遍历多次。而外键指针化方案在面对多个外键时,只要对事实表遍历一次, 没有中间结果,计算过程要清晰很多。

还有一点,内存本来应当是很适合并行计算的,但HASH分段JOIN算法却不容易并行。即使把数据分段并行计算HASH值,但要把相同HASH值的记录归聚到一起供下一轮比对,就会发生共享资源冲突的事情,这会把并行计算的优势完全抵消掉。而外键式JOIN模型下,关联两表的地位不对等,明确区分出维表和事实表后,只要简单地将事实表分段就可以并行计算。

将HASH分段技术参照外键属性方案进行改造后,也能一定程度地改善多外键一次解析和并行能力,有些数据库能在工程层面上实施这种优化。不过,这种优化在只有两个表JOIN时问题不大,在有很多表及各种JOIN混在一起时,数据库并不容易识别出应当把哪个表当作事实表去并行遍历、而把其它表当作维表建立HASH索引,这时优化并不总是有效的。所以我们经常会发现当JOIN的表变多时性能会急剧下降的现象(常常到四五个表时就会发生,结果集并无显著增大)。而从JOIN模型上引入外键概念后,将这种JOIN专门处理时,就总能分清事实表和维表,更多的JOIN表只会导致性能的线性下降。

内存数据库是当前比较火热的技术,但上述分析表明,采用SQL模型的内存数据库在JOIN运算上是很难快起来的!

专栏作者简介

润乾软件创始人、首席科学家


清华大学计算机硕士,著有《非线性报表模型原理》等,1989年,中国首个国际奥林匹克数学竞赛团体冠军成员,个人金牌;2000年,创立润乾公司;2004年,首次在润乾报表中提出非线性报表模型,完美解决了中国式复杂报表制表难题,目前该模型已经成为报表行业的标准;2014年,经过7年开发,润乾软件发布不依赖关系代数模型的计算引擎——集算器,有效地提高了复杂结构化大数据计算的开发和运算效率;2015年,润乾软件被福布斯中文网站评为“2015福布斯中国非上市潜力企业100强”;2016年,荣获中国电子信息产业发展研究院评选的“2016年中国软件和信息服务业十大领军人物”;2017年, 自主创新研发新一代的数据仓库、云数据库等产品即将面世。


数据蒋堂

《数据蒋堂》的作者蒋步星,从事信息系统建设和数据处理长达20多年的时间。他丰富的工程经验与深厚的理论功底相互融合、创新思想与传统观念的相互碰撞,虚拟与现实的相互交织,产生出了一篇篇的沥血之作。此连载的内容涉及从数据呈现、采集到加工计算再到存储以及挖掘等各个方面。大可观数据世界之远景、小可看技术疑难之细节。针对数据领域一些技术难点,站在研发人员的角度从浅入深,进行全方位、360度无死角深度剖析;对于一些业内观点,站在技术人员角度阐述自己的思考和理解。蒋步星还会对大数据的发展,站在业内专家角度给予预测和推断。静下心来认真研读你会发现,《数据蒋堂》的文章,有的会让用户避免重复前人走过的弯路,有的会让攻城狮面对扎心的难题茅塞顿开,有的会为初入行业的读者提供一把开启数据世界的钥匙,有的甚至会让业内专家大跌眼镜,产生思想交锋。


往期回顾:

数据蒋堂 | JOIN简化 - 意义总结

数据蒋堂 | JOIN简化-消除关联

数据蒋堂 | JOIN简化 - 维度对齐

数据蒋堂 | JOIN运算剖析

数据蒋堂 | 迭代聚合语法

数据蒋堂 | 非常规聚合

数据蒋堂 | 再谈有序分组

数据蒋堂 | 有序分组

数据蒋堂 | 非等值分组

数据蒋堂 | 还原分组运算的本意

数据蒋堂 | 有序遍历语法

数据蒋堂 | 常规遍历语法

数据蒋堂 | 从SQL语法看离散性

数据蒋堂 | 从SQL语法看集合化

数据蒋堂 | SQL用作大数据计算语法好吗?

数据蒋堂 | SQL的困难源于关系代数

数据蒋堂 | SQL像英语是个善意的错误

数据蒋堂 | 开放的计算能力为数据库瘦身

数据蒋堂 | 计算封闭性导致臃肿的数据库

数据蒋堂 | 怎样看待存储过程的移植困难

数据蒋堂 | 存储过程的利之弊

数据蒋堂 | 不要对自助BI期望过高

数据蒋堂 | 报表的数据计算层

数据蒋堂 | 报表应用的三层结构

数据蒋堂 | 列式存储的另一面

数据蒋堂 | 硬盘的性能特征

数据蒋堂 | 我们需要怎样的OLAP?

数据蒋堂 | 1T数据到底有多大?

数据蒋堂 | 索引的本质是排序

数据蒋堂 | 功夫都在报表外--漫谈报表性能优化

数据蒋堂 | 非结构化数据分析是忽悠?

数据蒋堂 | 多维分析的后台性能优化手段


校对:王红玉

为保证发文质量、树立口碑,数据派现设立“错别字基金”,鼓励读者积极纠错

若您在阅读文章过程中发现任何错误,请在文末留言,或到后台反馈,经小编确认后,数据派将向检举读者发8.8元红包

同一位读者指出同一篇文章多处错误,奖金不变。不同读者指出同一处错误,奖励第一位读者。

感谢一直以来您的关注和支持,希望您能够监督数据派产出更加高质的内容。

这篇关于数据蒋堂 | JOIN提速 - 外键指针化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901750

相关文章

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Rust 智能指针的使用详解

《Rust智能指针的使用详解》Rust智能指针是内存管理核心工具,本文就来详细的介绍一下Rust智能指针(Box、Rc、RefCell、Arc、Mutex、RwLock、Weak)的原理与使用场景,... 目录一、www.chinasem.cnRust 智能指针详解1、Box<T>:堆内存分配2、Rc<T>:

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性