数据蒋堂 | 人工智能中的“人工”

2024-04-14 01:08

本文主要是介绍数据蒋堂 | 人工智能中的“人工”,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=png&wxfrom=5&wx_lazy=1

作者:蒋步星

来源:数据蒋堂

本文共1085字,建议阅读4分钟
本文为你介绍人工智能的背后的“人工”,主要包括数据准备和数据科学家。


640?wx_fmt=png&wxfrom=5&wx_lazy=1


自从AlphaGo赢了之后,人工智能就变得非常热门了。不过,大家在关注“智能”时,却很少把注意力放在“人工”上,似乎感觉上了人工智能之后,一切都能自动化了。其实,这份智能的背后有着大量的“人工”,还有相当多不能自动化的事情。


这里的"人工"主要体现在两个方面:


 1. 数据准备


现代的人工智能技术,或者说机器学习,其基本方法和N多年前的数据挖掘并没有什么太大的不同,也还是将大量数据喂给计算机用于训练模型,模型生成之后就可以用于自动化处理,看起来就像有了智能。


然而,用于实际业务的机器学习项目,并不像AlphaGo那样可以自己生成数据来训练(其实AlphaGo的前期版本也用了大量现存的棋谱),必须使用实际发生过的数据才能训练模型。不同的数据训练出来的模型完全不同,数据的质量严重影响模型的效果。


但是,实际的数据五花八门,散落在各个应用系统中。想把它们整理出来供算法使用,并不是一件容易的事。机器学习需要的常常是比较规整的宽表数据,这还需要把各个应用系统中的关联数据拼接到一起;而各系统的数据编码规则可能不一样,这还需要先统一化;有些数据还是原始的文本(日志)形式,还需要事先从中抽取出结构化的信息;更不要说还有从互联网上扒出来的数据。


有经验的程序员都知道,一个数据挖掘项目中,用于数据准备的时间大约会占到70%-80%,也就是说,绝大多数工作量都花在训练模型之前。


这其实就是我们常说的ETL工作了,这些事看起来没什么技术含量,似乎是个程序员就能做,人们也就不很关心,但成本却高得要命。


 2. 数据科学家


ETL整理好的数据,也仍然不是那么好用的。还需要数据科学家来进行进一步处理才能进入建模环节。比如有些数据有缺失的,那么需要有某种办法来补缺;数据的偏度太大,而很多统计学方法要假定数据分布要尽量满足正态分布,这就需要先做一遍纠偏;还需要根据业务情况生成衍生变量(比如从日期生成星期、节假日等)。这些工作虽然也是建模前准备工作,但需要较专业的统计学知识,我们一般不把它算作为ETL的范围。


机器学习的建模算法有好几十种,各种算法都有各自的适用范围,还有大量的参数需要调节。如果用错了模型或调错了参数,那就会得到非常不智能的结果了。这时候又需要数据科学家们不断地尝试,计算并考察数据特征,选用合理的模型和参数,根据结果再反复迭代,经常较漫长的时间才能建一个实用的模型出来,短则二三周、长则二三月。


不过,近年来也出现一些完全自动迭代的手段(主要是神经网络),但计算时间很长,而且在许多领域(如金融风控)的效果并不太好,更有效的仍然是由数据科学家主导的方案,然而数据科学家们又少又贵。


是不是觉得现在的技术还有点low?人工智能的背后原来一点也不智能!


专栏作者简介

640?

润乾软件创始人、首席科学家


清华大学计算机硕士,著有《非线性报表模型原理》等,1989年,中国首个国际奥林匹克数学竞赛团体冠军成员,个人金牌;2000年,创立润乾公司;2004年,首次在润乾报表中提出非线性报表模型,完美解决了中国式复杂报表制表难题,目前该模型已经成为报表行业的标准;2014年,经过7年开发,润乾软件发布不依赖关系代数模型的计算引擎——集算器,有效地提高了复杂结构化大数据计算的开发和运算效率;2015年,润乾软件被福布斯中文网站评为“2015福布斯中国非上市潜力企业100强”;2016年,荣获中国电子信息产业发展研究院评选的“2016年中国软件和信息服务业十大领军人物”;2017年, 自主创新研发新一代的数据仓库、云数据库等产品即将面世。


数据蒋堂

《数据蒋堂》的作者蒋步星,从事信息系统建设和数据处理长达20多年的时间。他丰富的工程经验与深厚的理论功底相互融合、创新思想与传统观念的相互碰撞,虚拟与现实的相互交织,产生出了一篇篇的沥血之作。此连载的内容涉及从数据呈现、采集到加工计算再到存储以及挖掘等各个方面。大可观数据世界之远景、小可看技术疑难之细节。针对数据领域一些技术难点,站在研发人员的角度从浅入深,进行全方位、360度无死角深度剖析;对于一些业内观点,站在技术人员角度阐述自己的思考和理解。蒋步星还会对大数据的发展,站在业内专家角度给予预测和推断。静下心来认真研读你会发现,《数据蒋堂》的文章,有的会让用户避免重复前人走过的弯路,有的会让攻城狮面对扎心的难题茅塞顿开,有的会为初入行业的读者提供一把开启数据世界的钥匙,有的甚至会让业内专家大跌眼镜,产生思想交锋。


往期回顾:

数据蒋堂 | JOIN延伸 - 维度概念

数据蒋堂 | JOIN提速 - 有序归并

数据蒋堂 | JOIN提速 - 外键指针的衍生

数据蒋堂 | JOIN提速 - 外键指针化

数据蒋堂 | JOIN简化 - 意义总结

数据蒋堂 | JOIN简化-消除关联

数据蒋堂 | JOIN简化 - 维度对齐

数据蒋堂 | JOIN运算剖析

数据蒋堂 | 迭代聚合语法

数据蒋堂 | 非常规聚合

数据蒋堂 | 再谈有序分组

数据蒋堂 | 有序分组

数据蒋堂 | 非等值分组

数据蒋堂 | 还原分组运算的本意

数据蒋堂 | 有序遍历语法

数据蒋堂 | 常规遍历语法

数据蒋堂 | 从SQL语法看离散性

数据蒋堂 | 从SQL语法看集合化

数据蒋堂 | SQL用作大数据计算语法好吗?

数据蒋堂 | SQL的困难源于关系代数

数据蒋堂 | SQL像英语是个善意的错误

数据蒋堂 | 开放的计算能力为数据库瘦身

数据蒋堂 | 计算封闭性导致臃肿的数据库

数据蒋堂 | 怎样看待存储过程的移植困难

数据蒋堂 | 存储过程的利之弊

数据蒋堂 | 不要对自助BI期望过高

数据蒋堂 | 报表的数据计算层

数据蒋堂 | 报表应用的三层结构

数据蒋堂 | 列式存储的另一面

数据蒋堂 | 硬盘的性能特征

数据蒋堂 | 我们需要怎样的OLAP?

数据蒋堂 | 1T数据到底有多大?

数据蒋堂 | 索引的本质是排序

数据蒋堂 | 功夫都在报表外--漫谈报表性能优化

数据蒋堂 | 非结构化数据分析是忽悠?

数据蒋堂 | 多维分析的后台性能优化手段

数据蒋堂 | JOIN延伸 - 维度查询语法

数据蒋堂 | 文件的性能分析

数据蒋堂 | RDB与NoSQL的访问性能

数据蒋堂 | 报表开发的现状

数据蒋堂 | Hadoop - 一把杀鸡用的牛刀

数据蒋堂 | Hadoop中理论与工程的错位

数据蒋堂 | 存储和计算技术的选择


校对:陈瑞清


为保证发文质量、树立口碑,数据派现设立“错别字基金”,鼓励读者积极纠错

若您在阅读文章过程中发现任何错误,请在文末留言,或到后台反馈,经小编确认后,数据派将向检举读者发8.8元红包

同一位读者指出同一篇文章多处错误,奖金不变。不同读者指出同一处错误,奖励第一位读者。

感谢一直以来您的关注和支持,希望您能够监督数据派产出更加高质的内容。

640?wx_fmt=jpeg

这篇关于数据蒋堂 | 人工智能中的“人工”的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/901720

相关文章

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

Nacos日志与Raft的数据清理指南

《Nacos日志与Raft的数据清理指南》随着运行时间的增长,Nacos的日志文件(logs/)和Raft持久化数据(data/protocol/raft/)可能会占用大量磁盘空间,影响系统稳定性,本... 目录引言1. Nacos 日志文件(logs/ 目录)清理1.1 日志文件的作用1.2 是否可以删除