CVPR 2021 顶会冠军图像分割算法全解密

2024-04-13 20:18

本文主要是介绍CVPR 2021 顶会冠军图像分割算法全解密,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


来源:DataFunTalk本文约1400字,建议阅读5分钟 本文为大家介绍 CVPR 2021 顶会冠军图像分割算法。

以Tesla为首的全球各大新势力造车企业最近简直火的不能再火,过山车似的股价也足以证明各界对自动驾驶行业炽烈的期待! 而Tesla经过多方面权衡最终采用纯视觉识别的方案,这种方案相比激光雷达方案有更低成本以及更强的统一性。而图像分割技术,作为视觉识别技术中举足轻重的模块,是智能车得以精准区分哪里是路,哪里是人的关键!

而今天我们要给大家介绍的这个项目,它不仅涵盖业界最主流的DeepLab、UNet等23个系列60多个语义分割算法及预训练模型, 还新发布了在全球计算机视觉顶会CVPR2021上AutoNUE挑战中获得冠军的语义分割算法,还有实时高精度人像分割算法PPSeg、即将开源的精细化的分割PaddleSeg-Matting、全景分割算法Panoptic-DeepLab!

不仅如此,它还提供基于交互式分割算法的智能标注工具 EISeg!

Web 视频会议  

Matting

全景分割

交互式分割

简而言之,这个项目可以全方位、立体式地满足开发者在图像分割方向各个维度的需求。不得不大说一声:

这么好的产品,还不赶紧Star收藏起来细细研究?!

上车地址:

https://github.com/PaddlePaddle/PaddleSeg

 

产业级人像分割模型PPSeg 

人像分割技术的应用可谓无所不在!比如抠图、视频会议换背景、人体姿态分析等等。但往往数据来源和算法部署环境非常多样,有手机的、固定摄像头的、移动车载摄像头的等等,不仅如此,不同的光照条件也为人像分割算法带来了极大的考验。基于这样的产业难点,PaddleSeg团队推出了在大规模人像数据上训练的人像分割PPSeg模型,并针对服务端、移动端、Web端(Paddle.js)多种使用场景进行了不同的优化,都获得超群的效果。

而近期“百度视频会议”也上线了虚拟背景功能,通过Padddle.js实现了在web端部署,支持用户在视频会议时进行背景切换。

 

小伙伴们可以直接去百度首页体验百度视频会议,直观感受PaddleSeg和Paddle.js的能力。

精细化的分割解决方案 PaddleSeg-Matting 

随着分割技术的发展,人们对分割的精细化的要求也越来越高。比如在一些影视行业,绿幕作为拍摄的换背景常用的工作,但目标不在绿幕前拍摄,是否还能达到很好的背景分割功能呢?

答案是:能!

最近PaddleSeg团队开源的精细化分割解决方案PaddleSeg-Matting就很好的解决了这个问题。将目标的发丝实现了精准的分割。

交互式分割智能标注工具 

业界对于人工智能有这么一句话:“深度学习有多智能、背后就有多少人工”。这句话直接说出了深度学习从业者心中的痛处,毕竟模型的好坏数据占据着很大的因素,但是数据的标注成本却让很多从业的小伙伴们感到头疼。

因此,PaddleSeg团队联合PaddleCV-SIG成员基于RITM算法,推出了业界首个高性能的交互式分割工具EISeg。它可以通过一系列的绿色点(正点)和红色点(负点)实现对目标对象边缘精准的分割,可以用于图像编辑、半自动标注,从而实现精细化标注,抠图,辅助图像后期处理(例如PS)等场景应用。

PaddleSeg还支持对RITM模型的训练、预测及交互的全流程。我们利用百度自建人像数据集对模型Finetune,得到预测速度快,精度高,交互点少的人像交互式分割模型。

全景分割 Panoptic-DeepLab 

全景分割是图像分割领域在近年来兴起的一个新领域,它融合了语义分割和实例分割的技术,可以识别出已知可数对象(例如车、动物等)的实例语义信息;而对于未知不可数对象(例如沙滩、天空等)识别出单纯的语义信息。

而PaddleSeg提供的全景分割算法--Panoptic DeepLab以简单的网络结构实现了精度、速度双超越,开创了全景分割算法新方向,也是当前Cityscape全景分割榜首采用的算法。

你还在等什么?!如此用心研发的高水准产品,还不赶紧Star收藏上车!

传送门:

https://github.com/PaddlePaddle/PaddleSeg

编辑:于腾凯

这篇关于CVPR 2021 顶会冠军图像分割算法全解密的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901117

相关文章

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O