知乎 | 有哪些当时很有潜力但是最终没有流行的深度学习算法?

2024-04-13 19:38

本文主要是介绍知乎 | 有哪些当时很有潜力但是最终没有流行的深度学习算法?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ab09131f76de674c9808bbec402da238.png

来源:机器学习实验室
本文约2500字,建议阅读5分钟
本文带你了解有潜力但是没流行的深度学习方法。

每天的新工作新paper层出不穷,而能够在深度学习圈子里脱颖而出的工作屈指可数,还有很多有潜力的工作因为种种原因被埋没了。在你的科研/工程阅读中遇见过哪些看起来很有潜力的深度学习模型,对他们没有流行起来你有什么见解?

原问题:最近读了一些201x年的论文感觉有一些十分新颖但是也不知道为什么后续没有被重视。在你的科研/工程阅读中遇见过哪些看起来很有潜力的深度学习模型,对他们没有流行起来你有什么见解?

问题链接:

https://www.zhihu.com/question/490517834

# 回答一

作者:霍华德

来源链接:

https://www.zhihu.com/question/490517834/answer/2169566194

提名Memory Networks

d82e83a5d67b97b272571679878ef18b.png

原文链接:

https://arxiv.org/pdf/1410.3916.pdf

准确说Memory Networks并不只是一个模型,而是一套思路,使用外部的一个memory来存储长期记忆信息,因为当时RNN系列模型使用final state 存储的信息,序列过长就会遗忘到早期信息。

甚至,我觉得Memory Networks的思想后面启发了self-attention和transformer。最重要的就是提出了query - key - value思想,当时的该模型聚焦的任务主要是question answering,先用输入的问题query检索key-value memories,找到和问题相似的memory的key,计算相关性分数,然后对value embedding进行加权求和,得到一个输出向量。这后面就衍生出了self-attention里的Q,K,V表示,在self-attention里的Q=K=V,但早期的Memory Networks中可以看出,QKV其实是三个向量。

如今,Memory Networks已少有人提及,但它的思想已经被transformer继承,而transformer已经横扫NLP和CV等多个领域。突然有了一种“功成不必在我,而功成必定有我"的感慨。又联想到谭嗣同变法虽然失败了,但他又一个学生叫杨昌济,杨昌济又有一个学生叫毛泽东...

# 回答二

作者:edisonlee

来源链接:

https://www.zhihu.com/question/490517834/answer/2171472030

我也提一个:脉冲神经网络(Spiking Neural Networks, SNN),最早由Maass教授[1]于1997年提出的模型。SNN不能说完全消失,每年顶会都有那么几篇,但是总感觉不温不火的。

SNN是基于大脑运行机制的新一代人工神经网络,是目前最接近类脑计算水平的一类生物启发模型,具有可以处理生物激励信号以及解释大脑复杂智能行为的优势,被誉为第三代神经网络(第一代感知机,第二代以CNN为代表的的神经网络)。SNN在本质上与目前广泛使用的人工神经网络(ANN)存在巨大差异,主要体现在如下几点:

  1. SNN使用离散的脉冲序列(0和1)进行消息传递,而ANN使用实值;因此ANN具有更高的运算效率。

  2. SNN分为时间驱动和事件驱动两种。前者利用时间步长仿真信号,后者根据只有在接收或发射脉冲信号时才处于活跃状态;而大部分的ANN架构无法获取时间维度信息(除了RNN类的模型),并且每个神经元永远处于激活状态,因此SNN具有更少的能量消耗。

  3. SNN使用脉冲序列进行通讯,与人脑的消息传播机制更像,因此SNN比ANN更像神经网络。

  4. SNN可以运行在专用的神经形态硬件上,例如Intel Loihi[2],Brainchip Akida[3]等;而ANN主要应用在GPU上进行加速。已有文献证明,基于SNN 架构的芯片能量效率比基于Field Programmable Gate Array(FPGA)实现的卷积神经网络的能量效率高出两个数量级。


b382bc5f85f71e21b080c785947be8da.png

第一代与第二代人工神经网络

a1cc95f88e13199ec7640fc249ae832f.png

脉冲神经网络

导致SNN难以流行的原因主要是:

  1. SNN使用离散脉冲序列,其中脉冲发射函数Heaviside step函数具有不可微的性质,因此难以像目前的ANN一样使用梯度下降算法优化。虽然目前有一些替代梯度的方法,但是在效果上还是和ANN有点差距。

  2. 目前的神经形态硬件没有流行。目前主流的计算硬件都是GPU,在GPU上,0-1的脉冲序列都被当成实值进行矩阵运算,无法看出SNN与ANN的差距。

参考文献:

[1] Maass W. Networks of spiking neurons: the third generation of neural network models[J]. Neural networks, 1997, 10(9):1659-1671.

[2] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, YongqiangCao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,et al. 2018. Loihi: A neuromorphic manycore processor with on-chip learning.Ieee Micro38, 1 (2018), 82–99.

[3] Anup Vanarse, Adam Osseiran, Alexander Rassau, and Peter van der Made. 2019.A hardware-deployable neuromorphic solution for encoding and classificationof electronic nose data.Sensors19, 22 (2019), 4831.

[4] Cao Y, Chen Y, Khosla D. Spiking deep convolutional neural networks for energy-efficient object recognition[J]. International Journal of Computer Vision, 2015, 113(1):54-66.

# 回答三

作者:陀飞轮

来源链接:

https://www.zhihu.com/question/490517834/answer/2169518353

Hinton的胶囊网络(Capsule Network)

ed0a5d3f4c5b78c2927a4c05344137f0.png

原文链接:

https://arxiv.org/pdf/1710.09829.pdf

5d5ece88a88d37d331e18d4fb6cea7fd.png

原文链接:

https://openreview.net/pdf?id=HJWLfGWRb

Hinton认为人的视觉系统会建立“坐标框架”,并且坐标框架的不同会极大地改变人的认知。而在CNN上却很难看到类似“坐标框架”的东西。Hinton的看法是,我们需要 Equivariance 而不是 Invariance。Invariance,是指表示不随变换变化,比如分类结果等等;而 equivariance 不会丢失这些信息,它只是对内容的一种变换。

112d0a36c445d0c3c041bced447e0099.png 9814bdf16353995ad54f66a95573735e.png

Invariance 主要是通过 Pooling 等下采样过程得到的。CNN同样强调对空间的 invariance,也就是对物体的平移之类的不敏感(物体不同的位置不影响它的识别)。


对平移和旋转的 invariance(CNN的设计希望有invariance,虽然CNN不是完全的invariance),其实是丢弃了“坐标框架”,Hinton认为这是CNN不能反映“坐标框架”的重要原因。CNN 前面非 Pooling 的部分是 equivariance 的。

于是Hinton 提出了一个猜想:

物体和观察者之间的关系(比如物体的姿态),应该由一整套激活的神经元表示,而不是由单个神经元,或者一组粗编码(coarse-coded,这里意思是指类似一层中,并没有经过精细组织)的神经元表示。只有这样的表示,才能有效表达关于“坐标框架”的先验知识。而这一整套神经元,Hinton认为就是Capsule。

capsule network最大的特点就是“vector in vector out”,而之前的scaler neuron则是“scaler in scaler out”,所以本质上来讲capsule是一种vector neuron。capsule network中的每一层由若干个capsule组成,capsule的输入和输出均为一个向量。

98fd67c2d55fbca2aabd1d4159a43e5d.png

图2:神经元与胶囊的对比

图2对neuron和capsule进行对比。神经网络的输入是一系列的标量,通过对这些标量进行加权求和并经过激活函数,得到一个标量,也就是神经元的最终输出。capsule的输入则是一系列的向量,这些向量首先经过一个编码整体与部分关系的矩阵映射,然后这些向量根据和整体特征的相似度加权平均,得到表示整体的特征向量,最后通过一个squash函数得到capsule的输出。高层特征由低层特征加权得到,而权重又由高层特征和低层特征的相似程度计算得到,这两个问题相互依赖,于是capsule network提出一种动态路由算法(Dynamic Rounting)。

Capsule Network在刚发表的时候,引起了深度学习领域的广泛关注,一度认为可能会替代CNN成为新一代的通用网络架构,谁知道之后被Transformer一统江湖了。

Capsule Network之所以没有流行起来可能有三点原因:

  1. 理解capsule本身就有难度,而且使用了机器学习的一些算法,深度学习当道的年代,机器学习算法就算是高门槛了。

  2. capsule本身有很多细节没想清楚,比如原始的capsule是引入聚类的思想来对特征进行抽象,那有没有其他更合适的方法呢,capsule还存在许多没有解决的问题。

  3. Transformer中的self-attention能够建模pixel之间的相对关系,跟capsule的某些理念不谋而合,而且Transformer整体框架上要比capsule简洁易懂。

关于Capsule Network的来龙去脉可以看这篇介绍:

https://zhuanlan.zhihu.com/p/29435406

关于CNN平移不变性的讨论,可以看以下回答:

https://www.zhihu.com/question/301522740

编辑:于腾凯

校对:林亦霖bde2d74a3e3929e89283c33f4c78ef96.png

这篇关于知乎 | 有哪些当时很有潜力但是最终没有流行的深度学习算法?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901043

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen