著名统计学家David Cox去世:他提出的「COX回归模型」曾影响一代人

本文主要是介绍著名统计学家David Cox去世:他提出的「COX回归模型」曾影响一代人,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

944b75c311dbaac07dc8a1d087ea5f07.png

来源:机器之心
本文约1000字,建议阅读5分钟
他提出的「COX 回归模型」曾深刻地影响了统计学研究。

近日,英国著名统计学家 David Cox 去世,享年 97 岁。

c2e7ee263f40953c86fe14e282e20212.png

David Cox 因提出「COX 回归模型」而广为人知,并深刻地影响了统计学领域的研究。许多人自发地在社交媒体平台表达了悲痛和哀悼:

58918fe276bbc958408c7bb532cb2add.png

dbbab9edaba3774ca6bbdd21f5447425.png

323a992866144f0bc3a20fe4271e1ca1.png

David Cox 生平

David Cox1924 年出生于英国伯明翰,在剑桥大学圣约翰学院学习数学,并在 Henry Daniels 和 Bernard Welch 的指导下于 1949 年在利兹大学获得博士学位。

f85c19b0f1e9e5eee002bc0404df7daf.png

1950 年到 1956 年期间,David Cox 在剑桥大学的统计实验室工作。1956 年到 1966 年,他在伦敦大学伯贝克学院担任「Reader」和统计学教授。1966 年,他担任伦敦帝国理工学院统计学系主任,后来成为数学系主任。1988 年,成为纳菲尔德学院的院长和牛津大学统计系的成员,最后于 1994 年正式退休。

David Cox 在统计和应用概率方面做出了开创性的贡献,主要学术贡献包括 Cox 过程,以及影响深远且应用广泛的 Cox 比例风险模型等。

David Cox 曾任国际统计协会、伯努利数理统计与概率学会、英国皇家统计学会主席。同时,他还是英国皇家学会院士暨英国社会科学院院士,美国科学院、丹麦皇家科学院外籍院士。

因其做出的重要贡献,David Cox 获得皇家统计学会的盖伊奖章(1961 年)和金奖(1973 年),并于 1985 年被英国女王伊丽莎白二世封为爵士。2010 年,他因「对统计理论和应用的开创性贡献」而被授予英国皇家学会科普利奖章。他也是第一个获得国际统计奖(International Prize in Statistics)的人(2017 年)。

Cox 回归模型

生存分析的统计学领域涉及到一个特定事件发生之前的时间间隔,比如机械故障或者病人死亡。此处发生故障或者病人死亡的比率称为危险函数。

在 1972 年引入的 Cox 比例风险回归模型中,David Cox 提出了一个风险函数,该风险函数分为时间依赖和时间独立两部分。

03d7b02e9f63b46bc3c0be3826f83145.png

论文链接:

https://rss.onlinelibrary.wiley.com/share/XB97VAHIGECJZEBBBTWZ?target=10.1111/j.2517-6161.1972.tb00899.x

该模型通常用于医学研究中分析一个或多个前定变量对患者生存时间的影响。由于将依赖时间的输入与不依赖时间的输入分开,医学数据的分析得以大幅简化,Cox 模型在医学研究中得到了广泛的应用。据谷歌学术不完全统计,这篇文章的引用率目前超过 56612 次,也是迄今生存分析中应用最多的多因素分析方法。

97c943ff3c30f5ca8ff5cdfa32a7c807.png

2014 年 10 月,在《Nature》杂志评出的引用次数最多的 100 篇论文之中,Cox 回归成为「引用率最高的三篇统计学论文」之一。

此外,David Cox 著有许多统计学领域的书籍,包括随机过程理论(与 H.D.Miller 合著,1965 年) ,理论统计(与 d.v. Hinkley 合著,1974 年) ,生存数据分析(与 David Oakes 合著,1984 年) ,以及推论统计学原理(2006 年)。

d9cd2ec1fbd2f07a04cd826280c558bc.png

这篇关于著名统计学家David Cox去世:他提出的「COX回归模型」曾影响一代人的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900965

相关文章

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Java的"伪泛型"变"真泛型"后对性能的影响

《Java的伪泛型变真泛型后对性能的影响》泛型擦除本质上就是擦除与泛型相关的一切信息,例如参数化类型、类型变量等,Javac还将在需要时进行类型检查及强制类型转换,甚至在必要时会合成桥方法,这篇文章主... 目录1、真假泛型2、性能影响泛型存在于Java源代码中,在编译为字节码文件之前都会进行泛型擦除(ty

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll