开源模型应用落地-chatglm3-6b-zero/one/few-shot-入门篇(五)

2024-04-13 16:52

本文主要是介绍开源模型应用落地-chatglm3-6b-zero/one/few-shot-入门篇(五),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 一、前言

    Zero-Shot、One-Shot和Few-Shot是机器学习领域中重要的概念,特别是在自然语言处理和计算机视觉领域。通过Zero-Shot、One-Shot和Few-Shot学习,模型可以更好地处理未知的情况和新任务,减少对大量标注数据的依赖,提高模型的适应性和灵活性。这对于推动人工智能在现实世界中的应用具有重要意义,尤其是在面对数据稀缺、标注成本高昂或需要快速适应新环境的场景下。


二、术语

2.1. Zero-shot

    在零样本学习中,模型可以从未见过的类别中进行推理或分类。这意味着模型可以使用在其他类别上学到的知识来推广到新的类别,而无需在新类别上进行训练。

2.2. One-shot

    在单样本学习中,模型根据非常有限的样本进行学习。通常情况下,模型只能从每个类别中获得一个样本,并且需要从这个样本中学习如何进行分类。

2.3. Few-shot

    在少样本学习中,模型可以通过很少的样本进行学习,并且能够推广到新的类别。虽然少样本学习的定义没有具体的样本数量限制,但通常指的是模型只能从每个类别中获得很少的样本(例如,几个或几十个)。


三、前置条件

3.1. windows or linux操作系统均可

3.2. 下载chatglm3-6b模型

从huggingface下载:https://huggingface.co/THUDM/chatglm3-6b/tree/main

从魔搭下载:魔搭社区汇聚各领域最先进的机器学习模型,提供模型探索体验、推理、训练、部署和应用的一站式服务。https://www.modelscope.cn/models/ZhipuAI/chatglm3-6b/fileshttps://www.modelscope.cn/models/ZhipuAI/chatglm3-6b/files

 3.3. 创建虚拟环境&安装依赖

conda create --name chatglm3 python=3.10
conda activate chatglm3
pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 sentencepiece accelerate

四、技术实现

4.1.Zero-Shot

# -*-  coding = utf-8 -*-
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import tracebackmodelPath = "/model/chatglm3-6b"def chat(model, tokenizer, message, history, system):messages = []if system is not None:messages.append({"role": "system", "content": system})if history is not None:for his in history:user,assistant = hismessages.append({"role": "user", "content": user})messages.append({"role": "assistant", 'metadata': '', "content": assistant})try:for response in model.stream_chat(tokenizer,message, messages,  max_length=2048, top_p=0.9, temperature=0.45, repetition_penalty=1.1,do_sample=True):_answer,_history = responseyield _answerexcept Exception:traceback.print_exc()def loadTokenizer():tokenizer = AutoTokenizer.from_pretrained(modelPath, use_fast=False, trust_remote_code=True)return tokenizerdef loadModel():model = AutoModelForCausalLM.from_pretrained(modelPath, device_map="auto",  trust_remote_code=True).cuda()model = model.eval()# print(model)return modelif __name__ == '__main__':model = loadModel()tokenizer = loadTokenizer()start_time = time.time()message = '''
我希望你根据关系列表从给定的输入中抽取所有可能的关系三元组,并以JSON字符串[{'head':'', 'relation':'', 'tail':''}, ]的格式回答,relation可从列表['父母', '子女', '祖孙', '配偶']中选取,注意不需要返回不相关的内容。
给定输入:2023年,张三和王五结婚生了个女儿,叫王雨菲'''system = '你是一个人工智能助手,很擅长帮助人类回答问题'history = Noneresponse = chat(model, tokenizer, message,history,system)for answer in response:print(answer)end_time = time.time()print("执行耗时: {:.2f}秒".format(end_time - start_time))

调用结果:

4.2.One-Shot

# -*-  coding = utf-8 -*-
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import tracebackmodelPath = "/model/chatglm3-6b"def chat(model, tokenizer, message, history, system):messages = []if system is not None:messages.append({"role": "system", "content": system})if history is not None:for his in history:user,assistant = hismessages.append({"role": "user", "content": user})messages.append({"role": "assistant", 'metadata': '', "content": assistant})try:for response in model.stream_chat(tokenizer,message, messages,  max_length=2048, top_p=0.9, temperature=0.45, repetition_penalty=1.1,do_sample=True):_answer,_history = responseyield _answerexcept Exception:traceback.print_exc()def loadTokenizer():tokenizer = AutoTokenizer.from_pretrained(modelPath, use_fast=False, trust_remote_code=True)return tokenizerdef loadModel():model = AutoModelForCausalLM.from_pretrained(modelPath, device_map="auto",  trust_remote_code=True).cuda()model = model.eval()# print(model)return modelif __name__ == '__main__':model = loadModel()tokenizer = loadTokenizer()start_time = time.time()message = '''
我希望你根据关系列表从给定的输入中抽取所有可能的关系三元组,并以JSON字符串[{'head':'', 'relation':'', 'tail':''}, ]的格式回答,relation可从列表['父母', '子女', '祖孙', '配偶']中选取,注意不需要返回不相关的内容。
你可以参照以下示例:示例输入:在三十年前的一个风雨交加的夜晚,张三生了个儿子李四。示例输出:{"head": "张三","relation": "父子","tail": "李四"}。
给定输入:2023年,张三和王五结婚生了个女儿,叫王雨菲'''system = '你是一个人工智能助手,很擅长帮助人类回答问题'history = Noneresponse = chat(model, tokenizer, message,history,system)for answer in response:print(answer)end_time = time.time()print("执行耗时: {:.2f}秒".format(end_time - start_time))

调用结果:

4.3.Few-Shot

# -*-  coding = utf-8 -*-
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import tracebackmodelPath = "/model/chatglm3-6b"def chat(model, tokenizer, message, history, system):messages = []if system is not None:messages.append({"role": "system", "content": system})if history is not None:for his in history:user,assistant = hismessages.append({"role": "user", "content": user})messages.append({"role": "assistant", 'metadata': '', "content": assistant})try:for response in model.stream_chat(tokenizer,message, messages,  max_length=2048, top_p=0.9, temperature=0.45, repetition_penalty=1.1,do_sample=True):_answer,_history = responseyield _answerexcept Exception:traceback.print_exc()def loadTokenizer():tokenizer = AutoTokenizer.from_pretrained(modelPath, use_fast=False, trust_remote_code=True)return tokenizerdef loadModel():model = AutoModelForCausalLM.from_pretrained(modelPath, device_map="auto",  trust_remote_code=True).cuda()model = model.eval()# print(model)return modelif __name__ == '__main__':model = loadModel()tokenizer = loadTokenizer()start_time = time.time()message = '''
我希望你根据关系列表从给定的输入中抽取所有可能的关系三元组,并以JSON字符串[{'head':'', 'relation':'', 'tail':''}, ]的格式回答,relation可从列表['父母', '子女', '祖孙', '配偶']中选取,注意不需要返回不相关的内容。
你可以参照以下示例:示例输入1:在三十年前的一个风雨交加的夜晚,张三生了个儿子李四。示例输出1:{"head": "张三","relation": "父子","tail": "李四"}。示例输入2:小明和小李上个月结婚了。示例输出2:{"head": "小明","relation": "配偶","tail": "小李"}。
给定输入:2023年,张三和王五结婚生了个女儿,叫王雨菲'''system = '你是一个人工智能助手,很擅长帮助人类回答问题'history = Noneresponse = chat(model, tokenizer, message,history,system)for answer in response:print(answer)end_time = time.time()print("执行耗时: {:.2f}秒".format(end_time - start_time))


五、附带说明

5.1.测试结果

    ChatGLM3-6B模型规模相对较小,在关系抽取测试任务中表现一般,在同样的模型参数和测试数据下,QWen1.5-7B-Chat的表现会更加优异,在Zero-Shot场景下,也有较好的表现。具体测试情况如下:

Zero-Shot:基本能识别出关系三元组,同时返回较多无效内容

One-Shot:能准确识别出关系三元组,且无返回无效内容

Few-Shot:能准确识别出关系三元组,且无返回无效内容

这篇关于开源模型应用落地-chatglm3-6b-zero/one/few-shot-入门篇(五)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900693

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima