代码随想录算法训练营第三十八天| 509. 斐波那契数,70. 爬楼梯,746. 使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营第三十八天| 509. 斐波那契数,70. 爬楼梯,746. 使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目与题解

参考资料:动态规划基础

动态规划五步曲 

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

509. 斐波那契数

题目链接:​​​​​​​509. 斐波那契数

代码随想录题解:509. 斐波那契数

视频讲解:手把手带你入门动态规划 | LeetCode:509.斐波那契数_哔哩哔哩_bilibili

解题思路:

        斐波那契数是最经典的递归/迭代题,迭代方法对应的就是动态规划。

        已知F(0), F(1)以及F(n) = F(n-1)+F(n-2),直接就可以用循环逐一写出F(n)的值了。这里因为不需要求1-n之间每个数的斐波那契数,所以简单一点,不用数组记录结果,只要用临时变量记录F(n-1)和F(n-2)即可。

class Solution {public int fib(int n) {if (n <= 1) return n;int pre1 = 0, pre2 = 1;int cur = 0;for (int i = 2; i < n; i++) {cur = pre1 + pre2;pre1 = pre2;pre2 = cur;}return cur;}
}

看完代码随想录之后的想法 

        按照随想录的五步法做练习:

  1. 确定dp数组(dp table)以及下标的含义:dp[i]表示数i的斐波那契数
  2. 确定递推公式:题目已经给了,dp[i]=dp[i-1]+dp[i-2]
  3. dp数组如何初始化:同样题目已经给了,dp[0] = 0, dp[1] = 1
  4. 确定遍历顺序:当前数的斐波那契数由其前两个数相加直接得到,所以按顺序遍历即可
  5. 举例推导dp数组:随意用一串斐波那契数带入递推公式 - 0,1,1,2,3,5,8...,符合要求

遇到的困难

        无

70. 爬楼梯

题目链接:​​​​​​​70. 爬楼梯

代码随想录题解:70. 爬楼梯

视频讲解:带你学透动态规划-爬楼梯(对应力扣70.爬楼梯)| 动态规划经典入门题目_哔哩哔哩_bilibili

解题思路:

        这题其实其实就是求斐波那契数的变种,因为爬到当前楼梯的方法,要么是从前一个楼梯爬一级,要么是从再前一个楼梯爬两级,除此之外没有别的选择了,所以递推公式仍然是F(n) = F(n-1)+F(n-2),不一样的地方在于初始值,第一个数F(1)=1,第二个数F(2)=2。

class Solution {public int climbStairs(int n) {if (n <= 2) return n;int[] dp = new int[]{1, 2};int res = 0;for (int i = 3; i <= n; i++) {res = dp[0] + dp[1];dp[0] = dp[1];dp[1] = res;}return res;}
}

看完代码随想录之后的想法 

        附上拓展题,一次最多可以爬m个台阶

class Solution {
public:int climbStairs(int n) {vector<int> dp(n + 1, 0);dp[0] = 1;for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) { // 把m换成2,就可以AC爬楼梯这道题if (i - j >= 0) dp[i] += dp[i - j];}}return dp[n];}
};

遇到的困难

        无

746. 使用最小花费爬楼梯 

题目链接:746. 使用最小花费爬楼梯 

代码随想录题解:​​​​​​​746. 使用最小花费爬楼梯 

视频讲解:动态规划开更了!| LeetCode:746. 使用最小花费爬楼梯_哔哩哔哩_bilibili

解题思路:

        这题比普通爬楼梯略复杂了一些,除了一次可以爬一步或者两步的基础要求外,还有需要花费最小代价,所以爬楼梯时哪些台阶走一步,哪些台阶走两步,就涉及到了选择的问题。但是,这里还是可以抽象化为动态规划去做,用dp[i]记录爬到当前台阶所需的最小花费,那么dp[i]要么是从dp[i-1]走一步得到,要么是从dp[i-2]走两步得到,所以dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2])。

        这里需要注意一下,爬上第0级和第1级台阶是不需要代价的,所以初始化dp[0]=dp[1]=0。

class Solution {public int minCostClimbingStairs(int[] cost) {int[] dp = new int[]{0, 0};int sum = 0;for (int i = 2; i <= cost.length; i++) {sum = Math.min(dp[1] + cost[i - 1], dp[0] + cost[i - 2]);dp[0] = dp[1];dp[1] = sum;}return dp[1];}
}

看完代码随想录之后的想法 

        思路是一样的,这题同样不难,不严格按照五步分析也能写出来。但是后面题目变难了就不好说了。

遇到的困难

        一开始初始化dp[0]和dp[1]的时候写成了cost[0]cost[1],怎么着都不对,然后就用了一个数列举例,逐一写出如何得到dp[i]的结果,然后才意识到第0,1级台阶不需要cost就可以上去。所以做错的时候直接举例最直观。

今日收获

        初步学习了动态规划方法的五部曲,用简单题实践了一下,目前感觉尚可。

这篇关于代码随想录算法训练营第三十八天| 509. 斐波那契数,70. 爬楼梯,746. 使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900407

相关文章

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4