【Go实现】实践GoF的23种设计模式:桥接模式

2024-04-13 13:36

本文主要是介绍【Go实现】实践GoF的23种设计模式:桥接模式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇:【Go实现】实践GoF的23种设计模式:解释器模式

简单的分布式应用系统(示例代码工程):https://github.com/ruanrunxue/Practice-Design-Pattern–Go-Implementation

简介

GoF 对桥接模式(Bridge Pattern)的定义如下:

Decouple an abstraction from its implementation so that the two can vary independently.

也即,将抽象部分和实现部分进行解耦,使得它们能够各自往独立的方向变化

桥接模式解决了在模块有多种变化方向的情况下,用继承所导致的类爆炸问题。

举个例子,一个产品有形状和颜色两个特征(变化方向),其中形状分为方形和圆形,颜色分为红色和蓝色。如果采用继承的设计方案,那么就需要新增4个产品子类:方形红色、圆形红色、方形蓝色、圆形红色。如果形状总共有 m 种变化,颜色有 n 种变化,那么就需要新增 m * n 个产品子类!

现在我们使用桥接模式进行优化,将形状和颜色分别设计为抽象接口独立出来,这样需要新增 2 个形状子类:方形和圆形,以及 2 个颜色子类:红色和蓝色。同样,如果形状总共有 m 种变化,颜色有 n 种变化,总共只需要新增 m + n 个子类!

上述例子中,我们通过将形状和颜色抽象为一个接口,使产品不再依赖于具体的形状和颜色细节,从而达到了解耦的目的。桥接模式本质上就是面向接口编程,可以给系统带来很好的灵活性和可扩展性。如果一个对象存在多个变化的方向,而且每个变化方向都需要扩展,那么使用桥接模式进行设计那是再合适不过了。

当然,Go 语言从语言特性本身就把继承剔除,但桥接模式中分离变化、面向接口编程的思想仍然值得学习。

UML 结构

场景上下文

在 简单的分布式应用系统(示例代码工程)中,我们设计了一个 Monitor 监控系统模块,它可以看成是一个简单的 ETL 系统,负责对监控数据进行采集、处理、输出。监控数据来源于在线商场服务集群各个服务,当前通过消息队列模块 Mq 传递到监控系统,经处理后,存储到数据库模块 Db 上。

我们假设未来要上线一个不支持对接消息队列的服务、结果数据也需要存储到 ClickHouse 以供后续分析,为了应对未来多变的需求,我们有必要将监控系统设计得足够的可扩展。

于是,整个模块被设计为插件化风格的架构,Pipeline 是数据处理的流水线,其中包含了 InputFilterOutput 三类插件,Input 负责从各类数据源中获取监控数据,Filter 负责数据处理,Output 负责将处理后的数据输出。

上述设计中,我们抽象出 InputFilterOutput 三类插件,它们各种往独立的方向变化,最后在 Pipeline 上进行灵活组合,这使用桥接模式正合适。

代码实现

// 关键点1:明确产品的变化点,这里是input、filter和output三类插件,它们各自变化// demo/monitor/input/input_plugin.go
package input// 关键点2:将产品的变化点抽象成接口,这里是input.Plugin,filter.Plugin和output.Plugin
// Plugin 输入插件
type Plugin interface {plugin.PluginInput() (*plugin.Event, error)
}// 关键点3:实现产品变化点的接口,这里是SocketInput, AddTimestampFilter和MemoryDbOutput
// demo/monitor/input/socket_input.go
type SocketInput struct {socket      network.Socketendpoint    network.Endpointpackets     chan *network.PacketisUninstall uint32
}func (s *SocketInput) Input() (*plugin.Event, error) {packet, ok := <-s.packetsif !ok {return nil, plugin.ErrPluginUninstalled}event := plugin.NewEvent(packet.Payload())event.AddHeader("peer", packet.Src().String())return event, nil
}// demo/monitor/filter/filter_plugin.go
package filter// Plugin 过滤插件
type Plugin interface {plugin.PluginFilter(event *plugin.Event) *plugin.Event
}// demo/monitor/filter/add_timestamp_filter.go
// AddTimestampFilter 为MonitorRecord增加时间戳
type AddTimestampFilter struct {
}func (a *AddTimestampFilter) Filter(event *plugin.Event) *plugin.Event {re, ok := event.Payload().(*model.MonitorRecord)if !ok {return event}re.Timestamp = time.Now().Unix()return plugin.NewEvent(re)
}// demo/monitor/output/output_plugin.go
// Plugin 输出插件
type Plugin interface {plugin.PluginOutput(event *plugin.Event) error
}// demo/monitor/output/memory_db_output.go
type MemoryDbOutput struct {db        db.DbtableName string
}func (m *MemoryDbOutput) Output(event *plugin.Event) error {r, ok := event.Payload().(*model.MonitorRecord)if !ok {return fmt.Errorf("memory db output unknown event type %T", event.Payload())}return m.db.Insert(m.tableName, r.Id, r)
}// 关键点4:定义产品的接口或者实现,通过组合的方式把变化点桥接起来。
// demo/monitor/pipeline/pipeline_plugin.go
// Plugin pipeline由input、filter、output三种插件组成,定义了一个数据处理流程
// 数据流向为 input -> filter -> output
// 如果是接口,可以通过定义Setter方法达到聚合的目的。
type Plugin interface {plugin.PluginSetInput(input input.Plugin)SetFilter(filter filter.Plugin)SetOutput(output output.Plugin)
}// 如果是结构体,直接把变化点作为成员变量来达到聚合的目的。
type pipelineTemplate struct {input   input.Pluginfilter  filter.Pluginoutput  output.PluginisClose uint32run     func()
}func (p *pipelineTemplate) SetInput(input input.Plugin) {p.input = input
}func (p *pipelineTemplate) SetFilter(filter filter.Plugin) {p.filter = filter
}func (p *pipelineTemplate) SetOutput(output output.Plugin) {p.output = output
}// demo/monitor/pipeline/simple_pipeline.go
// SimplePipeline 简单Pipeline实现,每次运行时新启一个goroutine
type SimplePipeline struct {pipelineTemplate
}

在本系统中,我们通过配置文件来灵活组合插件,利用反射来实现插件的实例化,实例化的实现使用了抽象工厂模式,详细的实现方法可参考【Go实现】实践GoF的23种设计模式:抽象工厂模式。

总结实现桥接模式的几个关键点:

  1. 明确产品的变化点,这里是 input、filter 和 output 三类插件,它们各自变化。
  2. 将产品的变化点抽象成接口,这里是 input.Pluginfilter.Pluginoutput.Plugin
  3. 实现产品变化点的接口,这里是 SocketInput, AddTimestampFilterMemoryDbOutput
  4. 定义产品的接口或者实现,通过组合的方式把变化点桥接起来。这里是 pipeline.Plugin 通过 Setter 方法将input.Pluginfilter.Pluginoutput.Plugin 三个抽象接口桥接了起来。后面即可实现各类 input、filter 和 output 的灵活组合了。

扩展

TiDB 中的桥接模式

TiDB 是一款出色的分布式关系型数据库,它对外提供了一套插件框架,方便用户进行功能扩展。TiDB 的插件框架的设计,也运用到了桥接模式的思想。

如上图所示,每个 Plugin 都包含 ValidateOnInitOnShutdownOnFlush 四个待用户实现的接口,它们可以按照各自的方向去变化,然后灵活组合在 Plugin 中。

// Plugin presents a TiDB plugin.
type Plugin struct {*Manifestlibrary  *gplugin.PluginPath     stringDisabled uint32State    State
}// Manifest describes plugin info and how it can do by plugin itself.
type Manifest struct {Name           stringDescription    stringRequireVersion map[string]uint16License        stringBuildTime      string// Validate defines the validate logic for plugin.// returns error will stop load plugin process and TiDB startup.Validate func(ctx context.Context, manifest *Manifest) error// OnInit defines the plugin init logic.// it will be called after domain init.// return error will stop load plugin process and TiDB startup.OnInit func(ctx context.Context, manifest *Manifest) error// OnShutDown defines the plugin cleanup logic.// return error will write log and continue shutdown.OnShutdown func(ctx context.Context, manifest *Manifest) error// OnFlush defines flush logic after executed `flush tidb plugins`.// it will be called after OnInit.// return error will write log and continue watch following flush.OnFlush      func(ctx context.Context, manifest *Manifest) errorflushWatcher *flushWatcherVersion uint16Kind    Kind
}

TiDB 在实现插件框架时,使用函数式编程的方式来定义 OnXXX 接口,更具有 Go 风格。

典型应用场景

  • 从多个维度上对系统/类/结构体进行扩展,如插件化架构。
  • 在运行时切换不同的实现,如插件化架构。
  • 用于构建与平台无关的程序适配层。

优缺点

优点

  • 可实现抽象不分与实现解耦,变化实现时,客户端无须修改代码,符合开闭原则。
  • 每个分离的变化点都可以专注于自身的演进,符合单一职责原则。

缺点

  • 过度的抽象(过度设计)会使得接口膨胀,导致系统复杂性变大,难以维护。

与其他模式的关联

桥接模式通常与抽象工厂模式搭配使用,比如,在本文例子中,可以通过抽象工厂模式对各个 Plugin 完成实例化,详情见【Go实现】实践GoF的23种设计模式:抽象工厂模式。

文章配图

可以在 用Keynote画出手绘风格的配图 中找到文章的绘图方法。

参考

[1] 【Go实现】实践GoF的23种设计模式:SOLID原则, 元闰子

[2] Design Patterns, Chapter 4. Structural Patterns, GoF

[3] 【Go实现】实践GoF的23种设计模式:抽象工厂模式, 元闰子

[4] 桥接模式, refactoringguru.cn

更多文章请关注微信公众号:元闰子的邀请

这篇关于【Go实现】实践GoF的23种设计模式:桥接模式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900284

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2