【MATLAB源码-第186期】matlab基于MLE算法的8天线阵列DOA估计仿真,对比粗估计、精确估计输出RMSE对比图。

本文主要是介绍【MATLAB源码-第186期】matlab基于MLE算法的8天线阵列DOA估计仿真,对比粗估计、精确估计输出RMSE对比图。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

操作环境:

MATLAB 2022a

1、算法描述

第一部分:基本概念与系统设置

方向到达估计(Direction of Arrival, DOA)是信号处理中一项重要的技术,主要用于确定信号的到达方向。这种技术在雷达、无线通信和声纳等领域中有广泛的应用。DOA估计的核心目的是从接收到的信号中提取出信号源的位置信息。

在基于网格搜索的最大似然估计(Maximum Likelihood Estimation, MLE)方法中,首先需要构建一个天线阵列系统。这个系统通常由多个均匀排列的天线组成,每个天线都能接收来自同一信号源的信号。由于信号在不同天线之间传播的距离存在差异,因此会产生相位延迟,这些相位延迟包含了关于信号源方向的信息。

在实际操作中,首先需要定义一个搜索范围,这个范围内包含了可能的到达角度。然后,系统将这个范围划分为多个小的网格。每一个网格点都代表一个潜在的到达角度,系统将依次评估这些角度。

第二部分:网格搜索与成本函数

在基于网格搜索的最大似然估计(MLE)方法中,系统的核心是一个成本函数,这个函数能够衡量某个特定角度假设下的似然性有多高。对于每一个角度网格点,系统会计算一个所谓的“方向矢量”,这个矢量是一个复数数组,描述了在该角度假设下,信号在每个天线上的预期相位。

粗估计

在初步的DOA估计过程中,首先进行的是粗略估计。在这一阶段,搜索网格的尺寸较大,例如每个网格可能代表一度或更多。系统将逐一评估这些网格点,计算对应的成本函数。这个成本函数通常是基于预测信号和实际接收信号之间的误差来定义的,误差越小,成本函数值越小,表示该角度的似然性越高。选择成本函数值最小的角度作为粗略的DOA估计结果。这一步虽然不够精确,但可以快速缩小潜在的目标角度范围,为后续的精细估计奠定基础。

精细估计

粗略估计之后,系统进入精细估计阶段。在这一阶段,搜索的网格尺寸将显著减小,例如每个网格点可能只代表0.1度或更少。系统在粗估计得到的角度附近进行更密集的搜索,再次计算每个网格点的成本函数。由于网格更细,这一步能够提供更高精度的角度估计。精细估计虽然计算量更大,但通过减小网格尺寸,能够更准确地定位信号源的真实方向。

Cramer-Rao 下边界 (CRLB)

除了实际的估计过程,理论分析中常用的一个重要工具是Cramer-Rao下边界(CRLB)。CRLB为估计器的性能提供了一个理论下限,即在给定的信号条件下,任何无偏估计器的方差不可能低于这个界限。CRLB的计算通常依赖于信号模型的细节,包括信号和噪声的统计特性。在DOA估计中,CRLB可以帮助我们评估估计方法的效率,并对比不同方法在相同条件下的性能。

第三部分:性能优化与实际应用

虽然基于网格搜索的MLE方法在理论上非常强大,但它在实际应用中面临一些挑战。主要的挑战是计算量大和对信号噪声比的依赖性。为了应对这些挑战,实际应用中可能需要对方法进行优化。

一种常见的优化方式是使用多阶段搜索策略。在初步的粗略搜索阶段,可以使用较大的网格尺寸快速缩小可能的角度范围。一旦确定了一个大致的方向,再在这个方向附近进行更细致的搜索,使用更小的网格尺寸来精确确定最佳角度。这种多阶段搜索策略可以显著减少计算时间,同时保持较高的估计精度。

此外,为了进一步提高估计的准确性和鲁棒性,可以结合使用其他信号处理技术,如波束形成、信号分解和多传感器融合等方法。通过综合利用这些技术,可以有效地提高DOA估计的性能,特别是在多路径和高噪声环境中。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

      V

点击下方名片

这篇关于【MATLAB源码-第186期】matlab基于MLE算法的8天线阵列DOA估计仿真,对比粗估计、精确估计输出RMSE对比图。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/898360

相关文章

使用Java将实体类转换为JSON并输出到控制台的完整过程

《使用Java将实体类转换为JSON并输出到控制台的完整过程》在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用JSON格式,用Java将实体类转换为J... 在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用j

自研四振子全向增益天线! 中兴问天BE6800Pro+路由器拆机和详细评测

《自研四振子全向增益天线!中兴问天BE6800Pro+路由器拆机和详细评测》中兴问天BE6800Pro+路由器已经上市,新品配备自研四振子全向增益天线,售价399元,国补到手339.15元,下面我们... 中兴问天BE6800Pro+路由器自上市以来,凭借其“旗舰性能,中端价格”的定位,以及搭载三颗自研芯片

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

exfat和ntfs哪个好? U盘格式化选择NTFS与exFAT的详细区别对比

《exfat和ntfs哪个好?U盘格式化选择NTFS与exFAT的详细区别对比》exFAT和NTFS是两种常见的文件系统,它们各自具有独特的优势和适用场景,以下是关于exFAT和NTFS的详细对比... 无论你是刚入手了内置 SSD 还是便携式移动硬盘或 U 盘,都需要先将它格式化成电脑或设备能够识别的「文

Android实现一键录屏功能(附源码)

《Android实现一键录屏功能(附源码)》在Android5.0及以上版本,系统提供了MediaProjectionAPI,允许应用在用户授权下录制屏幕内容并输出到视频文件,所以本文将基于此实现一个... 目录一、项目介绍二、相关技术与原理三、系统权限与用户授权四、项目架构与流程五、环境配置与依赖六、完整

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思