算法还是算力?一篇微博引爆深度学习的“鸡生蛋,蛋生鸡”问题

2024-04-12 20:32

本文主要是介绍算法还是算力?一篇微博引爆深度学习的“鸡生蛋,蛋生鸡”问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


来源:数盟

  作者: 波波

上周,由强化学习加持的AlphaZero,把DeepMind在围棋上的突破成功泛化到其他棋类游戏:8小时打败李世石版AlphaGo,4小时击败国际象棋最强AI——Stockfish,2小时干掉日本象棋最强AI——Elmo,34小时胜过训练3天的AlphaGo Zero。

对于这个不再需要训练数据的AlphaZero,有人将其突破归功于DeepMind在实验中所用的5064个TPU的强大计算能力,更有甚者则将整个深度学习的突破都归功于算力,瞬间激起千层浪。

很快,南大周志华教授就在微博上指出,这个说法是绝对错误的

“最重要的进步是由机器学习技术的进步带来的,计算能力起到了促进作用而不是根本作用。”他的全文是这样的:

对此,中科院计算所的包云岗研究员则表示,“算法进步和计算能力进步对今天AI都不可或缺”,二者相辅相成。其中算力提升的作用则表现在运行时间减少、功耗降低、开发效率提高这几大方面,进步相当显著:

此后,周志华教授则把该问题进一步定性为:“机器学习的进步使我们从‘不能’到‘能’,计算能力的进步使我们从‘能’到‘更好’。试图抹杀前者的作用,认为一切都是计算能力提高带来的,是错误且危险的”

交锋的双方均有数据来做支撑:一边强调算法效率所提升的3万倍;另一边强调计算能力所提升的1万倍,特别是并行计算能力所带来的200万倍提速。

随后,杜克大学副教授陈怡然也加入论战,在他那篇《有关最近深度学习的两个争论》中,陈教授认为计算能力的提高对于深度学习的发展是有很大贡献的,他特别提到了Hinton老爷子和李飞飞教授的观点:

之前很多文章说到深度学习这波高潮的标志性起点是2006年Hinton那篇Science文章。在这篇文章里Hinton其中第一次明确提到计算能力是其研究能成功的三大条件之一:“provided that computers were fast enough, data sets were big enough,and the initial weights were close enough to a good solution”。2014年IBM TrueNoth芯片的发布会我受邀请在现场,当时刚刚加入斯坦福不到两年的李飞飞在她的邀请报告中明确提到CNN等深度学习模型的架构和1989年被发明时并无显著区别,之所以能广泛应用的主要原因时两个主要条件的变化:大数据的出现和运算力的提升(大约提高了一百万倍)。

这里提到的Hinton老爷子那篇文章,是他和当时的学生Russ Salakhutdinov(如今的苹果AI主管)共同署名的《Reducing the Dimensionality of Data with Neural Networks》一文。他们在文中提出了一种在前馈神经网络中进行有效训练的算法,即将网络中的每一层视为无监督的受限玻尔兹曼机,再使用有监督的反向传播算法进行调优。

这一论文奠定了反向传播算法在深度学习中的支柱性地位,并给出了深度学习成功的三大基石:计算能力、大数据和算法突破

“事后来看的话,利用大数据训练计算机算法的做法或许显而易见。但是在2007年,一切却没那么明显……”这是李飞飞教授2015年在TED演讲时所做的总结。到2009年,规模空前的ImageNet图片数据集诞生了。其中包括1500万张照片、涵盖22000种物品,仅”猫”一个对象,就有62000多只长相各异、姿势五花八门、品种多种多样的猫的照片。

这一“猫”的数据集,为吴恩达2012年在Google Brain实现“认出YouTube视频上的猫”的成果奠定好了基础。

同样在2012年,基于ImageNet的图像识别大赛,Hinton和他的学生Alex Krizhevsky在英伟达GPU上取得视觉领域的突破性成果。据此,英伟达研究中心的Bryan Catanzaro跟吴恩达合作研究GPU,结果证实,12个GPU的深度学习能力相当于2000个CPU的表现总和。

而后,英伟达开始在深度学习上发力——投入20亿美元、动用数千工程师,第一台专门为深度学习优化的GPU被提上日程。经过3年多的开发,直到2016年5月正式发布,才有了老黄GPU的深度学习大爆炸。

简单来从时间线上看,确实是先有算法上的突破,而后才有更大规模的数据集,以及专注于深度学习的GPU硬件。把这一切归功于计算能力的提升,似乎确有免费替老黄卖硬件的嫌疑。

但是看具体的进展,Hinton老爷子2006年的算法突破终究离不开当时的数据集与计算机硬件。毕竟,Pascal语言之父Niklaus Wirth早就告诉我们,算法加上数据结构才能写出实用的程序。而没有计算机硬件承载运行的程序代码,则又毫无存在的意义。

回到AlphaZero的问题,它的突破到底该归功于算法还是算力?

我们知道,AlphaZero是AlphaGo Zero的进一步优化,后者的目的是让电脑不学人类的对局也能学会围棋,这是AlphaGo彻底打败人类之后,DeepMind赋予其围棋项目的新使命。尽管不使用任何训练数据,AlphaZero却用到5000个TPU来生成对弈数据,而用于模型训练的TPU数量仅为64个。

而这里的一切投入,不过是DeepMind之父Demis Hassabis想要解决通用学习问题、超越人类认知极限的一个注脚。如果没有DeepMind大量的人力物力投入,蒙特卡洛树搜索算法和GPU并行计算可不会自发地进化成AlphaGo并打败李世石、柯洁,如果没有更进一步的投入,AlphaGo Zero也不会自己就能学会围棋,AlphaZero更不会自动把它的围棋能力泛化到其他棋类上。

也就是说,AlphaZero和它的强化学习算法、它的TPU运算集群,是由它背后David Silver、Demis Hassabis等人的疯狂努力才组合出最佳的效果,向解决通用学习的最终问题又迈进了一步。

而撇开这个全景,单点去谈算法和算力之于深度学习孰强孰弱,就有点像是抛开鸡的整个物种的进化,而去谈先有鸡还是先有蛋的问题……问题只是,到底大家是关心鸡的祖先多一点呢?还是关心餐盘内的鸡蛋、鸡肉好不好吃多一些?



点击下方“阅读原文”了解燃气报警云平台
↓↓↓

这篇关于算法还是算力?一篇微博引爆深度学习的“鸡生蛋,蛋生鸡”问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/898160

相关文章

MySQL主从同步延迟问题的全面解决方案

《MySQL主从同步延迟问题的全面解决方案》MySQL主从同步延迟是分布式数据库系统中的常见问题,会导致从库读取到过期数据,影响业务一致性,下面我将深入分析延迟原因并提供多层次的解决方案,需要的朋友可... 目录一、同步延迟原因深度分析1.1 主从复制原理回顾1.2 延迟产生的关键环节二、实时监控与诊断方案

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图