GEE数据集——1986年—2022年加拿大全国烧毁面积综合数据 (NBAC)

2024-04-12 18:28

本文主要是介绍GEE数据集——1986年—2022年加拿大全国烧毁面积综合数据 (NBAC),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 简介

加拿大全国烧毁面积综合数据 (NBAC)¶
全国烧毁面积综合数据 (NBAC) 是一个地理信息系统数据库和系统,用于计算自 1986 年以来每年全国范围内烧毁的森林面积。这些数据用于帮助估算加拿大的碳排放量。烧毁面积是通过评估一系列可用数据源确定的,这些数据源使用不同的技术绘制任何特定火灾的地图。该系统为每个烧毁地区选择最佳可用数据源,并建立一个全国综合图。

NBAC 是火灾监测、核算和报告系统(FireMARS)的一部分,该系统由加拿大自然资源部加拿大测绘与地球观测中心(前身为加拿大遥感中心)和加拿大林业局联合开发。火灾监测和报告系统最初是在加拿大航天局政府相关倡议计划的资助下,由火灾研究、森林碳核算和遥感方面的人员合作开发的。

NBAC 的数据来自- 加拿大自然资源部,以及 - 加拿大省级、地区级和公园机构。

NBAC 可用于景观尺度火灾影响的空间和时间分析。您可以在此处下载数据集

补充信息


NBAC 是 FireMARS 系统自 1986 年以来每年编制的国家产品,该系统跟踪森林火灾,用于年度碳排放估算,并帮助识别可能受到火灾干扰的国家森林资源调查地块。更多信息请参见 FireMARS 网站 (http://www.nrcan.gc.ca/forests/fire/13159) 和碳核算-干扰监测网站 (http://www.nrcan.gc.ca/forests/climate-change/13109)。

在使用这些数据进行制图活动和分析、研究、评估或展示时,请使用以下引文注明来源:

加拿大林务局。国家燃烧区综合数据 (NBAC)。加拿大自然资源部,加拿大林业局,北部林业中心,艾伯塔省埃德蒙顿。https://cwfis.cfs.nrcan.gc.ca/。

像素产品的详细信息

像素产品由 5 个文件组成:

JD.tif:烧毁区域的首次探测日
CL.tif:烧毁区域检测的置信度
BA.tif:烧毁面积,与计算出的烧毁像素比例相对应。
OB.tif:观测次数,即该月观测到该像元的次数。
xml:产品的元数据

像素属性汇总

AttributeUnitsData TypeNotes
Date of the first detection (JD)Day of the year (1-366)Float- 0: Not burned - 1-366: Day of first detection for burned pixel - -1: Not observed in month - -2: Not burnable (water, bare land, urban, snow/ice)
Confidence level (CL)0-100Float- 0: Low burn probability - 1-100: Increasing burn probability confidence - -1: Not observed in month - -2: Not burnable (water, bare land, urban, snow/ice)
Burned Area (BA)Square metersFloat- 0-N: Burned area within pixel cell - -1: Not observed in month - -2: Not burnable (water, bare land, urban, snow/ice)
Number of observations (OB)0-31Int16- 0-31: No-cloud observations in pixel - 0: Not observed - -2: Not burnable (water, bare land, urban, snow/ice)

代码

var nbac_raster8622 = ee.Image("projects/sat-io/open-datasets/CA_FOREST/NBAC/NBAC_MRB_1986_to_2022");
var nbac8622 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/nbac_1986_to_2022_20230630");
var nbac_1986_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1986_r9_20210810");
var nbac_1987_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1987_r9_20210810");
var nbac_1988_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1988_r9_20210810");
var nbac_1989_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1989_r9_20210810");
var nbac_1990_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1990_r9_20210810");
var nbac_1991_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1991_r9_20210810");
var nbac_1992_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1992_r9_20210810");
var nbac_1993_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1993_r9_20210810");
var nbac_1994_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1994_r9_20210810");
var nbac_1995_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1995_r9_20210810");
var nbac_1996_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1996_r9_20210810");
var nbac_1997_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1997_r9_20210810");
var nbac_1998_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1998_r9_20210810");
var nbac_1999_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1999_r9_20210810");
var nbac_2000_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2000_r9_20210810");
var nbac_2001_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2001_r9_20210810");
var nbac_2002_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2002_r9_20210810");
var nbac_2003_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2003_r9_20210810");
var nbac_2004_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2004_r9_20210810");
var nbac_2005_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2005_r9_20210810");
var nbac_2006_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2006_r9_20210810");
var nbac_2007_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2007_r9_20210810");
var nbac_2008_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2008_r9_20210810");
var nbac_2009_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2009_r9_20210810");
var nbac_2010_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2010_r9_20210810");
var nbac_2011_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2011_r9_20210810");
var nbac_2012_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2012_r9_20210810");
var nbac_2013_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2013_r9_20210810");
var nbac_2014_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2014_r9_20210810");
var nbac_2015_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2015_r9_20210810");
var nbac_2016_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2016_r9_20210810");
var nbac_2017_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2017_r9_20210810");
var nbac_2018_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2018_r9_20210810");
var nbac_2019_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2019_r9_20210810");
var nbac_2020_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2020_r9_20210810");
var nbac_2021_r9_20220624 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2021_r9_20220624");
var nbac_2022_r12_20230630 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2022_r12_20230630");//Setup basemaps
var snazzy = require("users/aazuspan/snazzy:styles");
snazzy.addStyle("https://snazzymaps.com/style/132/light-gray", "Grayscale");var palette = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b','#e377c2', '#7f7f7f', '#bcbd22', '#17becf', '#aec7e8', '#ffbb78','#98df8a', '#ff9896', '#c5b0d5', '#c49c94', '#f7b6d2', '#c7c7c7','#dbdb8d', '#9edae5', '#393b79', '#637939', '#8c6d31', '#843c39','#7b4173', '#5254a3', '#637939', '#8c6d31', '#bd9e39', '#8c6d31','#bd9e39', '#8c6d31', '#bd9e39', '#8c6d31', '#bd9e39', '#8c6d31'
];//Center the object
Map.setCenter(-97.31,56.71,4)Map.addLayer(nbac_raster8622,{min:1986,max:2022,palette:palette},'National Burned Area Raster Composite 1986-2022')
Map.addLayer(nbac8622,{},'National Burned Area Composite 1986-2022',false)

数据引用

Skakun, R.; Castilla, G.; Metsaranta, J.; Whitman, E.; Rodrigue, S.; Little, J.; Groenewegen, K.; Coyle, M. (2022). Extending the National Burned Area Composite Time Series of Wildfires in Canada. Remote Sensing, 14, 3050. DOI: https://doi.org/10.3390/rs14133050 Skakun, R.S.; Whitman, E.; Little, J.M.; and Parisien, M.-A. (2021). Area burned adjustments to historical wildland fires in Canada. Environmental Research Letters 16 064014. DOI: https://doi.org/10.1088/1748-9326/abfb2c Hall, R.J.; Skakun, R.S.; Metsaranta, J.M.; Landry, R.; Fraser, R.H.; Raymond, D.A.; Gartrell, J.M.; Decker, V. and Little, J.M. (2020). Generating annual estimates of forest fire disturbance in Canada: the National Burned Area Composite. International Journal of Wildland Fire. 10.1071/WF19201. DOI: https://doi.org/10.1071/WF19201

代码链接

https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:fire-monitoring-analysis/CA-NATIONAL-BURNED-AREA-COMPOSITE

License¶

Open Government Licence - Canada (Open Government Licence - Canada | Open Government - Government of Canada). When using these data for mapping activities and analysis, research, evaluation or display, please acknowledged the source using the following citation: Canadian Forest Service. National Burned Area Composite (NBAC). Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta. Canadian Wildland Fire Information System / Système canadien d'information sur les feux de végétation.

Created by: Natural Resources Canada,Canadian Wildland Fire Information System

Curated in GEE by : Samapriya Roy

Keywords: canada,burned area,forestry,forest fire,wildfire

Last updated in GEE: 2024-04-02

网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

这篇关于GEE数据集——1986年—2022年加拿大全国烧毁面积综合数据 (NBAC)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897894

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核