GEE数据集——1986年—2022年加拿大全国烧毁面积综合数据 (NBAC)

2024-04-12 18:28

本文主要是介绍GEE数据集——1986年—2022年加拿大全国烧毁面积综合数据 (NBAC),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 简介

加拿大全国烧毁面积综合数据 (NBAC)¶
全国烧毁面积综合数据 (NBAC) 是一个地理信息系统数据库和系统,用于计算自 1986 年以来每年全国范围内烧毁的森林面积。这些数据用于帮助估算加拿大的碳排放量。烧毁面积是通过评估一系列可用数据源确定的,这些数据源使用不同的技术绘制任何特定火灾的地图。该系统为每个烧毁地区选择最佳可用数据源,并建立一个全国综合图。

NBAC 是火灾监测、核算和报告系统(FireMARS)的一部分,该系统由加拿大自然资源部加拿大测绘与地球观测中心(前身为加拿大遥感中心)和加拿大林业局联合开发。火灾监测和报告系统最初是在加拿大航天局政府相关倡议计划的资助下,由火灾研究、森林碳核算和遥感方面的人员合作开发的。

NBAC 的数据来自- 加拿大自然资源部,以及 - 加拿大省级、地区级和公园机构。

NBAC 可用于景观尺度火灾影响的空间和时间分析。您可以在此处下载数据集

补充信息


NBAC 是 FireMARS 系统自 1986 年以来每年编制的国家产品,该系统跟踪森林火灾,用于年度碳排放估算,并帮助识别可能受到火灾干扰的国家森林资源调查地块。更多信息请参见 FireMARS 网站 (http://www.nrcan.gc.ca/forests/fire/13159) 和碳核算-干扰监测网站 (http://www.nrcan.gc.ca/forests/climate-change/13109)。

在使用这些数据进行制图活动和分析、研究、评估或展示时,请使用以下引文注明来源:

加拿大林务局。国家燃烧区综合数据 (NBAC)。加拿大自然资源部,加拿大林业局,北部林业中心,艾伯塔省埃德蒙顿。https://cwfis.cfs.nrcan.gc.ca/。

像素产品的详细信息

像素产品由 5 个文件组成:

JD.tif:烧毁区域的首次探测日
CL.tif:烧毁区域检测的置信度
BA.tif:烧毁面积,与计算出的烧毁像素比例相对应。
OB.tif:观测次数,即该月观测到该像元的次数。
xml:产品的元数据

像素属性汇总

AttributeUnitsData TypeNotes
Date of the first detection (JD)Day of the year (1-366)Float- 0: Not burned - 1-366: Day of first detection for burned pixel - -1: Not observed in month - -2: Not burnable (water, bare land, urban, snow/ice)
Confidence level (CL)0-100Float- 0: Low burn probability - 1-100: Increasing burn probability confidence - -1: Not observed in month - -2: Not burnable (water, bare land, urban, snow/ice)
Burned Area (BA)Square metersFloat- 0-N: Burned area within pixel cell - -1: Not observed in month - -2: Not burnable (water, bare land, urban, snow/ice)
Number of observations (OB)0-31Int16- 0-31: No-cloud observations in pixel - 0: Not observed - -2: Not burnable (water, bare land, urban, snow/ice)

代码

var nbac_raster8622 = ee.Image("projects/sat-io/open-datasets/CA_FOREST/NBAC/NBAC_MRB_1986_to_2022");
var nbac8622 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/nbac_1986_to_2022_20230630");
var nbac_1986_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1986_r9_20210810");
var nbac_1987_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1987_r9_20210810");
var nbac_1988_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1988_r9_20210810");
var nbac_1989_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1989_r9_20210810");
var nbac_1990_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1990_r9_20210810");
var nbac_1991_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1991_r9_20210810");
var nbac_1992_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1992_r9_20210810");
var nbac_1993_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1993_r9_20210810");
var nbac_1994_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1994_r9_20210810");
var nbac_1995_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1995_r9_20210810");
var nbac_1996_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1996_r9_20210810");
var nbac_1997_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1997_r9_20210810");
var nbac_1998_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1998_r9_20210810");
var nbac_1999_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1999_r9_20210810");
var nbac_2000_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2000_r9_20210810");
var nbac_2001_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2001_r9_20210810");
var nbac_2002_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2002_r9_20210810");
var nbac_2003_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2003_r9_20210810");
var nbac_2004_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2004_r9_20210810");
var nbac_2005_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2005_r9_20210810");
var nbac_2006_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2006_r9_20210810");
var nbac_2007_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2007_r9_20210810");
var nbac_2008_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2008_r9_20210810");
var nbac_2009_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2009_r9_20210810");
var nbac_2010_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2010_r9_20210810");
var nbac_2011_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2011_r9_20210810");
var nbac_2012_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2012_r9_20210810");
var nbac_2013_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2013_r9_20210810");
var nbac_2014_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2014_r9_20210810");
var nbac_2015_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2015_r9_20210810");
var nbac_2016_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2016_r9_20210810");
var nbac_2017_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2017_r9_20210810");
var nbac_2018_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2018_r9_20210810");
var nbac_2019_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2019_r9_20210810");
var nbac_2020_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2020_r9_20210810");
var nbac_2021_r9_20220624 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2021_r9_20220624");
var nbac_2022_r12_20230630 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2022_r12_20230630");//Setup basemaps
var snazzy = require("users/aazuspan/snazzy:styles");
snazzy.addStyle("https://snazzymaps.com/style/132/light-gray", "Grayscale");var palette = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b','#e377c2', '#7f7f7f', '#bcbd22', '#17becf', '#aec7e8', '#ffbb78','#98df8a', '#ff9896', '#c5b0d5', '#c49c94', '#f7b6d2', '#c7c7c7','#dbdb8d', '#9edae5', '#393b79', '#637939', '#8c6d31', '#843c39','#7b4173', '#5254a3', '#637939', '#8c6d31', '#bd9e39', '#8c6d31','#bd9e39', '#8c6d31', '#bd9e39', '#8c6d31', '#bd9e39', '#8c6d31'
];//Center the object
Map.setCenter(-97.31,56.71,4)Map.addLayer(nbac_raster8622,{min:1986,max:2022,palette:palette},'National Burned Area Raster Composite 1986-2022')
Map.addLayer(nbac8622,{},'National Burned Area Composite 1986-2022',false)

数据引用

Skakun, R.; Castilla, G.; Metsaranta, J.; Whitman, E.; Rodrigue, S.; Little, J.; Groenewegen, K.; Coyle, M. (2022). Extending the National Burned Area Composite Time Series of Wildfires in Canada. Remote Sensing, 14, 3050. DOI: https://doi.org/10.3390/rs14133050 Skakun, R.S.; Whitman, E.; Little, J.M.; and Parisien, M.-A. (2021). Area burned adjustments to historical wildland fires in Canada. Environmental Research Letters 16 064014. DOI: https://doi.org/10.1088/1748-9326/abfb2c Hall, R.J.; Skakun, R.S.; Metsaranta, J.M.; Landry, R.; Fraser, R.H.; Raymond, D.A.; Gartrell, J.M.; Decker, V. and Little, J.M. (2020). Generating annual estimates of forest fire disturbance in Canada: the National Burned Area Composite. International Journal of Wildland Fire. 10.1071/WF19201. DOI: https://doi.org/10.1071/WF19201

代码链接

https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:fire-monitoring-analysis/CA-NATIONAL-BURNED-AREA-COMPOSITE

License¶

Open Government Licence - Canada (Open Government Licence - Canada | Open Government - Government of Canada). When using these data for mapping activities and analysis, research, evaluation or display, please acknowledged the source using the following citation: Canadian Forest Service. National Burned Area Composite (NBAC). Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta. Canadian Wildland Fire Information System / Système canadien d'information sur les feux de végétation.

Created by: Natural Resources Canada,Canadian Wildland Fire Information System

Curated in GEE by : Samapriya Roy

Keywords: canada,burned area,forestry,forest fire,wildfire

Last updated in GEE: 2024-04-02

网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

这篇关于GEE数据集——1986年—2022年加拿大全国烧毁面积综合数据 (NBAC)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897894

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本