【课堂笔记】阿里云基于机器学习的客户流失预警分析

2024-04-12 16:32

本文主要是介绍【课堂笔记】阿里云基于机器学习的客户流失预警分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片会抽空传的。
学习的东西:
1.客户流失预警的分析方法
2.流失预警分析中的关键技术
3.使用机器学习pai进行分析
4.任务:通信公司客户流失预警分析

客户流失:由于企业各种营销手段的实施,而导致客户和企业终止合作的现象
哪些客户易流失呢:以前是用经验模型的方法来分析,找一些对行业有理解的人自己归纳流失用户的特性。
现在是从数据中提取。从已有数据中找出客户的共性。

分析流程

应用:成熟的行业,更关注减少流失而不是拉新
通信:商业:金融:

机器学习及决策树
机器学习:对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么我们称这个计算机程序在从经验E学习。
通过大量做站,找到seo的方向,其实也是一种低效的机器学习手段。或者说当以计算机的速度来处理seo,就是机器学习的应用了。

常见类型:监督学习和无监督学习
一个有样本,一个没样本,但随着时间推移会得出一些大概率的结果。
分类模型:决策树

如何构建决策树

1、准备工作:
观察数据,明确自变量和因变量
自变量:客户的属性
因变量:最终结果

明确信息度量方式:信息增益
熵:

案例:

从这里就可以知道按照什么方式来判断更好了
基尼系数:

明确分支终止条件
纯度:
记录条数:
循环次数:

构建决策树:
流程:

案例:







决策树算法系列:
一、ID3系列 迭代树3代
核心是信息熵,根据信息增益决定树的节点

拥有的问题:
信息度量不合理:倾向于选择取值多的字段
输入类型单一:离散型
不做剪枝,容易过拟合
c4.5:
用信息增益率代替信息增益
能对连续属性进行离散化,对不完整数据进行处理
进行剪枝

c50:
使用了boosting
前修剪、后修剪

二、CART

集成学习:针对同一数据集,训练多种学习器,来解决同一问题
bagging:
有放回抽样构建多个子集
训练多个分类器
最终结果由各分类器结果投票得出
实现非常简单


要注意分类器之间也是有共通点的,这里的计算是指的所有分类器之间没有任何联系的情况下。
boosting:
重复使用一类学习器来修改训练集
每次训练后根据结果调整样本的权重
每个学习器加权后的线性组合即为最终结果

adaboost

图中变大的代表加了权
stacking:
由两极组成,第一级为初级学习期,第二级为高级学习器
第一级学习器的输出作为第二级学习器的输入。

随机森林 randomforest
由许多决策树组成,树生成的时候采用了随机的方法
smart bagging:不单按行取值,还会按列取值
生成步骤:
随机采样,生成多个样本集

对每个样本集构建决策树
优点:
可以处理多分类
不会过拟合
容易实现并行
对数据集容错能力强

重要概念:
特征工程:最大限度地从原始数据中提取特征以供算法和模型使用
数据预处理:标准化、缩放、缺失值、变换、编码等
特征产生:结合业务数据,派生新的特征
特征选择:通过各种统计量、模型评分等,筛选合适的特征
降维:PCA、LDA等减少特征个数
能用更少的模型得出好的结果,就尽量不要用太多的模型。模型越多,受影响越多。

模型评估:解释&泛华
解释:模型能够很好的解释数据集叫做解释型模型
泛化:把一个模型使用在新的数据集上,如果表现非常糟糕,说明泛化能力差(顾名思义。使用广泛化)
过拟合:在原来的数据集表现的非常好,在另一个数据集上又太差了。这就是泛化能力差,也即是过拟合

客户流失预警的实现流程:

特征选择主要特征,次要特征尽量减少。

使用pai

这篇关于【课堂笔记】阿里云基于机器学习的客户流失预警分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897653

相关文章

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499