Ray框架解析,轻松入门Python分布式机器学习

2024-04-12 14:04

本文主要是介绍Ray框架解析,轻松入门Python分布式机器学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,在现代科技发展的背景下,机器学习任务对分布式计算的依赖日益加深。这些任务包括网络训练、超参数调优、模型部署和数据处理等,都对计算资源有着巨大的需求。缺乏集群计算支持,会导致这些任务处理速度缓慢,严重降低工作效率。

Ray这一分布式计算框架的出现,为解决计算瓶颈提供了有效途径。它专为Python语言设计,并且能够与PyTorch等深度学习库无缝协作,提升机器学习应用的开发速度和部署效率。

本文将介绍Ray生态系统的核心元素以及如何将其与PyTorch配合使用。 

1.Ray简介

图片

Ray是一个开源的Python库,专注于并行和分布式计算。

上图展示了从宏观角度观察,Ray的生态系统主要由三个关键部分组成:

1) Ray系统的核心:提供基础的并行和分布式计算能力

2) 可扩展的机器学习库:包括Ray团队开发的原生库,也包括社区贡献的第三方库。

3) 工具:用于在各种集群环境或云服务上轻松启动和管理集群。

这样的架构设计使Ray能够灵活适应不同的计算需求和环境,为用户提供强大的计算支持。

2.Ray的核心优势

Ray框架能够让Python应用程序在多个CPU核心或计算机上并行运行,显著提高了处理速度和计算效率。以下是Ray的主要优势:

  • 简单性:不用重构代码,即可实现扩展Python应用程序,无论是在单机还是多台机器环境。

  • 稳健性:即便面临硬件故障或任务抢占,应用仍能稳定运行,不受影响。

  • 高性能:任务执行延迟低至毫秒级,可以扩展到数万个核心,同时在处理数值数据时保持低序列化开销。

3.库生态系统

由于Ray框架具有通用性,开发者社区已在其基础上开发出众多库和工具,用以应对各种不同的计算任务。这些库大多数都能与PyTorch兼容,且对原有代码的改动极小,实现了各个库之间的无缝集成。以下是Ray生态系统中众多库的若干示例。

3.1 RaySGD

图片

PyTorch的DataParallel与Ray在p3dn.24xlarge实例上的比较

RaySGD是一个专为数据并行训练提供分布式训练封装工具的库,旨在简化并加速训练流程。例如,RaySGD TorchTrainer是围绕torch.distributed.launch的封装器,通过提供Python API,可以将分布式训练集成到更广泛的Python应用中。这样一来,开发者无需将训练代码嵌入到复杂的bash脚本里,便能实现训练的分布式运行。

此外,RaySGD库还具备以下优势:

  • 易用性:无需密切监控各个计算节点,即可扩展PyTorch的DistributedDataParallel。

  • 可扩展性:支持从单一CPU到多节点、多CPU和多GPU集群的灵活扩展,仅需简单修改几行代码。

  • 加速训练:内置支持使用NVIDIA Apex进行混合精度训练。

  • 容错性:当云计算资源被抢占时,能够自动进行恢复。

  • 兼容性:与其他库如Ray Tune和Ray Serve无缝集成。

可以通过安装Ray(pip install -U ray torch)并运行以下代码来开始使用TorchTrainer:

import torch
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
import torchvision.transforms as transformsimport ray
from ray.util.sgd.torch import TorchTrainer
from ray.util.sgd.torch import TrainingOperator
# https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
from ray.util.sgd.torch.resnet import ResNet18def cifar_creator(config):"""Returns dataloaders to be used in `train` and `validate`."""tfms = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465),(0.2023, 0.1994, 0.2010)),])  # 均值和标准差的转换train_loader = DataLoader(CIFAR10(root="~/data", download=True, transform=tfms), batch_size=config["batch"])validation_loader = DataLoader(CIFAR10(root="~/data", download=True, transform=tfms), batch_size=config["batch"])return train_loader, validation_loaderdef optimizer_creator(model, config):"""Returns an optimizer (or multiple)"""return torch.optim.SGD(model.parameters(), lr=config["lr"])CustomTrainingOperator = TrainingOperator.from_creators(model_creator=ResNet18, # 返回nn.Module的函数optimizer_creator=optimizer_creator, # 返回优化器的函数data_creator=cifar_creator, # 返回数据加载器的函数loss_creator=torch.nn.CrossEntropyLoss  # 损失函数)ray.init()trainer = TorchTrainer(training_operator_cls=CustomTrainingOperator,config={"lr": 0.01, # 用于optimizer_creator"batch": 64 # 用于data_creator},num_workers=2,  # 并行化的程度use_gpu=torch.cuda.is_available(),use_tqdm=True)stats = trainer.train()
print(trainer.validate())torch.save(trainer.state_dict(), "checkpoint.pt")
trainer.shutdown()
print("success!")

该脚本将下载CIFAR-10数据集,并使用ResNet-18模型进行图像分类。通过改变一个参数(num_workers=N),可以利用多个GPU来加速训练过程。

3.2 Ray Tune

图片

Ray Tune实现了诸如Population Based Training(如上图所示)等优化算法,这些算法可以与PyTorch一起使用,以构建性能更优的模型。

Ray Tune是一个用于实验执行并进行超参数优化的Python库,适用于不同规模的项目。该库的一些优点包括:

  • 能够在不到10行代码的情况下,即可开展多节点的分布式超参数搜索。

  • 兼容所有主流的机器学习框架,包括PyTorch。

  • 提供对GPU的直接支持,优化计算效率。

  • 自动进行模型检查点的保存,并支持将训练过程记录到TensorBoard,方便追踪和可视化。

可以通过安装Ray(pip install ray torch torchvision)并运行以下代码来开始使用Ray Tune。

import numpy as np
import torch
import torch.optim as optimfrom ray import tune
from ray.tune.examples.mnist_pytorch import get_data_loaders, train, test
import ray
import sysif len(sys.argv) > 1:ray.init(redis_address=sys.argv[1])import torch.nn as nn
import torch.nn.functional as Fclass ConvNet(nn.Module):def __init__(self):super(ConvNet, self).__init__()self.conv1 = nn.Conv2d(1, 3, kernel_size=3)self.fc = nn.Linear(192, 10)def forward(self, x):x = F.relu(F.max_pool2d(self.conv1(x), 3))x = x.view(-1, 192)x = self.fc(x)return F.log_softmax(x, dim=1)def train_mnist(config):model = ConvNet()train_loader, test_loader = get_data_loaders()optimizer = optim.SGD(model.parameters(), lr=config["lr"], momentum=config["momentum"])for i in range(10):train(model, optimizer, train_loader, torch.device("cpu"))acc = test(model, test_loader, torch.device("cpu"))tune.track.log(mean_accuracy=acc)if i % 5 == 0:# 这会将模型保存到试验目录中torch.save(model.state_dict(), "./model.pth")from ray.tune.schedulers import ASHASchedulersearch_space = {"lr": tune.choice([0.001, 0.01, 0.1]),"momentum": tune.uniform(0.1, 0.9)
}analysis = tune.run(train_mnist,num_samples=30,scheduler=ASHAScheduler(metric="mean_accuracy", mode="max", grace_period=1),config=search_space)

3.3 Ray Serve

图片

Ray Serve不仅可以单独用于部署模型,还可以用来扩展其他服务工具,比如FastAPI。

Ray Serve是个易于使用的可扩展模型服务库,该库的一些优点包括:

  • 能够通过统一的工具集处理和服务各类模型,包括但不限于深度学习模型(如PyTorch、TensorFlow)以及scikit-learn模型,同时也支持任意Python业务逻辑的部署。

  • 具备跨多台机器扩展服务的能力,无论这些机器位于本地数据中心还是云环境中。

  • 与许多其他库如Ray Tune和FastAPI等具有良好的兼容性。

3.4 RLlib

图片

RLlib提供了定制训练几乎各个方面的方法,包括神经网络模型、动作分布、策略定义、环境以及样本收集过程。

RLlib是个强化学习库,提供了高度可扩展性和统一的API,适用于各种应用场景。一些优势包括:

  • 原生兼容多个深度学习框架,包括PyTorch、TensorFlow Eager模式以及TensorFlow的1.x和2.x版本。

  • 支持多种强化学习算法,如模型无关的算法、基于模型的算法、进化算法、规划算法以及多智能体算法。

  • 通过简单的配置和自动封装机制,轻松实现复杂模型结构的构建,例如注意力网络和LSTM堆栈。

3.5 Cluster Launcher(集群启动器)

图片

Ray集群启动器简化了在任何集群或云服务提供商上启动和扩展的过程。

当开发者在笔记本电脑上开发完应用程序,并打算将其部署到云端以处理更大规模的数据或利用更多的GPU资源时,接下来的部署步骤可能会显得有些复杂。通常,可以选择让基础设施团队来协助配置,或者自己手动完成以下操作:

  1. 选择一个云服务提供商,如AWS、GCP或Azure。

  2. 通过管理控制台配置实例类型、安全组、竞价价格、实例限制等参数。

  3. 确定如何在集群中部署和运行您的Python脚本。

为了简化这一过程,可以使用Ray集群启动器,它能够在任何云服务提供商或集群环境中快速启动和扩展计算资源。Ray集群启动器支持自动扩缩容、文件同步、脚本提交和端口映射等功能,让开发者能够在Kubernetes、AWS、GCP、Azure或私有集群上无缝运行Ray集群,而无需深入了解集群管理的具体细节。

 4.总结

图片

Ray为蚂蚁集团的融合引擎提供了分布式计算基础

综上所述,本文介绍了Ray在PyTorch生态系统中所带来的一系列优势。Ray已经得到了广泛应用,涵盖了从蚂蚁集团使用Ray支持其金融业务,到LinkedIn在Yarn上部署Ray,以及Pathmind将Ray用于将强化学习技术整合到模拟软件中的多个场景。

这篇关于Ray框架解析,轻松入门Python分布式机器学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897333

相关文章

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Ubuntu如何升级Python版本

《Ubuntu如何升级Python版本》Ubuntu22.04Docker中,安装Python3.11后,使用update-alternatives设置为默认版本,最后用python3-V验证... 目China编程录问题描述前提环境解决方法总结问题描述Ubuntu22.04系统自带python3.10,想升级

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶