快速列表quicklist

2024-04-12 08:44
文章标签 快速 列表 quicklist

本文主要是介绍快速列表quicklist,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

为什么使用快速列表quicklist

对比双向链表

对比压缩列表ziplist

quicklist结构

节点结构quicklistNode

quicklist 

管理ziplist信息的结构quicklistEntry

 迭代器结构quicklistIter

 quicklist的API

1.创建快速列表

2.创建快速列表节点

3.头插quicklistPushHead 和尾插quicklistPushTail

4.特定位置插入元素(不是节点)

5.删除元素 

6.查找元素

总结 quicklist的特性


为什么使用快速列表quicklist

​在 Redis 的早期设计中,如果列表类型的对象中元素的长度较小或数量比较少的,就采用压缩列表来存储,反之则使用双向链表

对比双向链表

双向链表便于在链表的两端进行插入和删除操作,在插入节点上复杂度很低,但是它的内存开销比较大,每个节点除了要保存数据之外,还要额外保存两个指针,并且双向链表的各个节点是单独的内存块,地址不连续,容易产生内存碎片

对比压缩列表ziplist

压缩列表存储在一段连续的内存上,所以存储效率高。但是,它每次变更的时间复杂度都比较高,插入和删除操作需要频繁的申请和释放内存,如果压缩列表长度很长,一次 realloc 可能会导致大批量的数据拷贝。

如何保留ziplist的空间高效性,又能不让其更新复杂度过高?

​Redis 在 3.2 版本之后引入了快速列表,列表类型的对象其底层都是由快速列表实现。快速列表是双向链表和压缩列表的混合体,它将双向链表按段切分,每一段都使用压缩列表来紧凑存储,多个压缩列表之间使用双向指针关联起来。

quicklist结构

quicklist是个双端链表,节点结构是quicklistNode,节点的zl字段指向压缩列表。

节点结构quicklistNode

quicklistNode是快速列表的节点。

typedef struct quicklistNode {struct quicklistNode *prev;struct quicklistNode *next;unsigned char *zl;        //指向ziplistunsigned int sz;             /* ziplist size in bytes */unsigned int count : 16;     /* count of items in ziplist */unsigned int encoding : 2;   /* RAW==1 or LZF==2 */unsigned int container : 2;  /* NONE==1 or ZIPLIST==2 */unsigned int recompress : 1; /* was this node previous compressed? */unsigned int attempted_compress : 1; /* node can't compress; too small */unsigned int extra : 10; /* more bits to steal for future usage */
} quicklistNode;
  • prev:前驱节点指针。
  • next:后驱节点指针。
  • zl:数据指针,如果当前节点的数据没有压缩,则指向一个 ziplist 结构,否则指向一个 quicklistLZF 结构。
  • sz:表示zl指向的数据总大小。注意,若数据被压缩,其表示压缩前的数据长度大小。
  • count:占16bit,表示当前节点的ziplist的entry的个数
  • encoding:占2bit,表示当前节点的数据是否被压缩。1表示没有压缩;2是压缩,用的是LZF算法。
  • container:是一个预留字段,本来设计是用来表明一个quicklist节点下面是直接存数据,还是使用ziplist存数据,或者用其它的结构来存数据(用作数据容器,所以叫container)。目前这个值是一个固定的值2,表示使用 ziplist 作为数据容器
  • recompress:当我们使用类似 lindex 这样的命令查看了某一项本来压缩的数据时,需要把数据暂时解压,这时就设置 recompress=1 做一个标记,等有机会再把数据重新压缩。
  • extra:其它扩展字段。目前Redis的实现里也没用上。

quicklist 

快速列表的结构,从其结构可以看出其是一个链表,保存了头尾节点。

#if UINTPTR_MAX == 0xffffffff
/* 32-bit */
#   define QL_FILL_BITS 14
#   define QL_COMP_BITS 14
#   define QL_BM_BITS 4
#elif UINTPTR_MAX == 0xffffffffffffffff
/* 64-bit */
#   define QL_FILL_BITS 16
#   define QL_COMP_BITS 16
#   define QL_BM_BITS 4 /* we can encode more, but we rather limit the usersince they cause performance degradation. */
#else
#   error unknown arch bits count
#endif
//上面的表示:QL_FILL_BITS值在32位机器上是14,64位机器上是16typedef struct quicklist {quicklistNode *head;        //头节点quicklistNode *tail;        //尾结点unsigned long count;        /* total count of all entries in all ziplists */unsigned long len;          /* number of quicklistNodes */int fill : QL_FILL_BITS;              /* fill factor for individual nodes */unsigned int compress : QL_COMP_BITS; /* depth of end nodes not to compress;0=off */unsigned int bookmark_count: QL_BM_BITS;quicklistBookmark bookmarks[];
} quicklist;//当指定使用lzf压缩算法压缩ziplist的entry节点时,quicklistNode结构的zl成员指向quicklistLZF结构
typedef struct quicklistLZF {//表示被LZF算法压缩后的ziplist的大小unsigned int sz; /* LZF size in bytes*///保存压缩后的ziplist的数组,柔性数组char compressed[];
} quicklistLZF;/* quicklist node encodings */
#define QUICKLIST_NODE_ENCODING_RAW 1
#define QUICKLIST_NODE_ENCODING_LZF 2/* quicklist compression disable */
#define QUICKLIST_NOCOMPRESS 0/* quicklist container formats */
#define QUICKLIST_NODE_CONTAINER_NONE 1
#define QUICKLIST_NODE_CONTAINER_ZIPLIST 2#define quicklistNodeIsCompressed(node)                                        \((node)->encoding == QUICKLIST_NODE_ENCODING_LZF)
  • count:所有压缩列表的节点数量之和
  • len:快速类别的节点数量
  • fill:存放 list-max-ziplist-size 参数的值,用于设置每个quicklistnode的压缩列表的所有entry的总长度大小。其值默认是-2,表示每个quicklistNode节点的ziplist所占字节数不能超过8kb。若是任意正数:,表示ziplist结构所最多包含的entry个数,最大为215215。
  • compress:存放 list-compress-depth 参数的值,用于设置压缩深度。快速列表默认的压缩深度为 0,即不压缩。为了支持快速的 push/pop 操作,快速列表的首尾两个节点不压缩,此时压缩深度就是1。若压缩深度为2,表示快速列表的首尾第一个及第二个节点都不压缩。
  • bookmark_count:占 4 bit,bookmarks 数组的长度。 
  • bookmarks:这是一个可选字段,快速列表重新分配内存时使用,不使用时不占用空间。

管理ziplist信息的结构quicklistEntry

和压缩列表一样,entry结构在储存时是一连串的内存块,需要将其每个entry节点的信息读取到管理该信息的结构体中,以便操作。

//管理quicklist中quicklistNode节点中ziplist信息的结构
typedef struct quicklistEntry {const quicklist *quicklist;   //指向所属的quicklist的指针quicklistNode *node;          //指向所属的quicklistNode节点的指针unsigned char *zi;            //指向当前ziplist结构的指针unsigned char *value;         //查找到的元素如果是字符串,则存在value字段long long longval;            //查找到的元素如果是整数,则存在longval字段unsigned int sz;              //保存当前元素的长度int offset;                  //保存查找到的元素距离压缩列表头部/尾部隔了多少个节点
} quicklistEntry;

迭代器结构quicklistIter

在Redis的quicklist结构中,实现了自己的迭代器,用于遍历节点。

//quicklist的迭代器结构
typedef struct quicklistIter {const quicklist *quicklist;   //指向所属的quicklist的指针quicklistNode *current;       //指向当前迭代的quicklist节点的指针unsigned char *zi;            //指向当前quicklist节点中迭代的ziplistlong offset;                  //当前ziplist结构中的偏移量     int direction;                //迭代方向
} quicklistIter;

 quicklist的API

1.创建快速列表

创建快速列表,快速列表的成员变量都使用默认值

/* Create a new quicklist.* Free with quicklistRelease(). */
//创建快速列表,并对各个字段进行初始化
quicklist *quicklistCreate(void) {struct quicklist *quicklist;quicklist = zmalloc(sizeof(*quicklist));quicklist->head = quicklist->tail = NULL;quicklist->len = 0;quicklist->count = 0;quicklist->compress = 0;quicklist->fill = -2;quicklist->bookmark_count = 0;return quicklist;
}

创建列表,传入自己设置的参数

//设置压缩深度
#define COMPRESS_MAX ((1 << QL_COMP_BITS)-1)
void quicklistSetCompressDepth(quicklist *quicklist, int compress) {if (compress > COMPRESS_MAX) {compress = COMPRESS_MAX;} else if (compress < 0) {compress = 0;}quicklist->compress = compress;
}//设置压缩列表的大小(成员fill),即是每个压缩列表的总entry的总长度大小
#define FILL_MAX ((1 << (QL_FILL_BITS-1))-1)
void quicklistSetFill(quicklist *quicklist, int fill) {if (fill > FILL_MAX) {fill = FILL_MAX;} else if (fill < -5) {fill = -5;}quicklist->fill = fill;
}//设置快速列表的参数
void quicklistSetOptions(quicklist *quicklist, int fill, int depth) {quicklistSetFill(quicklist, fill);quicklistSetCompressDepth(quicklist, depth);
}//通过一些默认参数创建快速列表,就是调用了前面这些封装好的函数
quicklist *quicklistNew(int fill, int compress) {quicklist *quicklist = quicklistCreate();quicklistSetOptions(quicklist, fill, compress);return quicklist;
}

2.创建快速列表节点

REDIS_STATIC quicklistNode *quicklistCreateNode(void) {quicklistNode *node;node = zmalloc(sizeof(*node));node->zl = NULL;node->count = 0;node->sz = 0;node->next = node->prev = NULL;node->encoding = QUICKLIST_NODE_ENCODING_RAW;    //默认不压缩node->container = QUICKLIST_NODE_CONTAINER_ZIPLIST; //默认使用压缩列表结构来存数据node->recompress = 0;return node;
}

3.头插quicklistPushHead 和尾插quicklistPushTail

/* 头部插入* 如果在已存在节点插入,返回0* 如果是在新的头结点插入,返回1 */
int quicklistPushHead(quicklist *quicklist, void *value, size_t sz) {quicklistNode *orig_head = quicklist->head;//判断头节点的空间是否足够容纳要添加的元素if (likely(_quicklistNodeAllowInsert(quicklist->head, quicklist->fill, sz))) {quicklist->head->zl =ziplistPush(quicklist->head->zl, value, sz, ZIPLIST_HEAD);  // 在头结点对应的ziplist中插入 quicklistNodeUpdateSz(quicklist->head);} else { // 否则新建一个头结点,然后插入数据 quicklistNode *node = quicklistCreateNode();node->zl = ziplistPush(ziplistNew(), value, sz, ZIPLIST_HEAD);quicklistNodeUpdateSz(node);//新增元素添加进这个新的快速列表节点里_quicklistInsertNodeBefore(quicklist, quicklist->head, node);}quicklist->count++;quicklist->head->count++;return (orig_head != quicklist->head);
}/* 尾部插入。* 如果在已存在节点插入,返回0* 如果是在新的头结点插入,返回1 */
int quicklistPushTail(quicklist *quicklist, void *value, size_t sz) {quicklistNode *orig_tail = quicklist->tail;if (likely(_quicklistNodeAllowInsert(quicklist->tail, quicklist->fill, sz))) {quicklist->tail->zl =ziplistPush(quicklist->tail->zl, value, sz, ZIPLIST_TAIL);quicklistNodeUpdateSz(quicklist->tail);} else {quicklistNode *node = quicklistCreateNode();node->zl = ziplistPush(ziplistNew(), value, sz, ZIPLIST_TAIL);quicklistNodeUpdateSz(node);_quicklistInsertNodeAfter(quicklist, quicklist->tail, node);}quicklist->count++;quicklist->tail->count++;return (orig_tail != quicklist->tail);
}

头插和尾插都是先调用了_quicklistNodeAllowInsert来判断能否在当前头/尾节点插入。如果能插入就直接插入到对应的ziplist中,否则就需要新建一个新节点再进行操作。

前面讲解过的quicklist结构的fill字段,其实_quicklistNodeAllowInsert就是根据fill的值来判断是否已经超过最大容量的。

其中使用到函数_quicklistInsertNodeBefore 和 _quicklistInsertNodeBefore,这两个就是在指定位置插入元素。

4.特定位置插入元素(不是节点)

注意:我们使用Redis,接触到的快速列表插入的都是插入元素,不是插入快速列表的节点。

插入元素会使用到结构体quicklistEntry

void quicklistInsertBefore(quicklist *quicklist, quicklistEntry *entry,void *value, const size_t sz) {_quicklistInsert(quicklist, entry, value, sz, 0);
}void quicklistInsertAfter(quicklist *quicklist, quicklistEntry *entry,void *value, const size_t sz) {_quicklistInsert(quicklist, entry, value, sz, 1);
}/* 在一个已经存在的entry前面或者后面插入一个新的entry * 如果after==1表示插入到后面,否则是插入到前面  */
REDIS_STATIC void _quicklistInsert(quicklist *quicklist, quicklistEntry *entry,void *value, const size_t sz, int after) {int full = 0, at_tail = 0, at_head = 0, full_next = 0, full_prev = 0;int fill = quicklist->fill;//1. 获取插入位置的quicklist的节点,通过entry的node字段quicklistNode *node = entry->node;quicklistNode *new_node = NULL;assert(sz < UINT32_MAX); /* TODO: add support for quicklist nodes that are sds encoded (not zipped) *///2. 该节点不存在,也只有当快速列表的头或尾节点存在才会进入这个if条件if (!node) {/* we have no reference node, so let's create only node in the list */D("No node given!");new_node = quicklistCreateNode();//将添加的元素插入快速列表节点对应的压缩列表的节点头部new_node->zl = ziplistPush(ziplistNew(), value, sz, ZIPLIST_HEAD);__quicklistInsertNode(quicklist, NULL, new_node, after);new_node->count++;quicklist->count++;return;}//3. 判断node节点对应的压缩列表是否能够容纳得下要添加的元素,即node节点是否已满if (!_quicklistNodeAllowInsert(node, fill, sz)) {D("Current node is full with count %d with requested fill %lu",node->count, fill);//表示当前节点的数量已满full = 1;}//4. 判断是否需要是在尾部添加if (after && (entry->offset == node->count)) {//表示在尾部添加at_tail = 1;if (!_quicklistNodeAllowInsert(node->next, fill, sz)) {D("Next node is full too.");//表示下一quicklistNode的ziplist的entry已满了full_next = 1;}}//5.判断是否在头部添加if (!after && (entry->offset == 0)) {D("At Head");at_head = 1;if (!_quicklistNodeAllowInsert(node->prev, fill, sz)) {D("Prev node is full too.");//表示前一节点已满full_prev = 1;}}//未完待续..........,后面再讲解
}
  • 1.通过通过entry的node字段获取插入位置的quicklist的节点
  • 2.判断该节点是否存在,若不存在,就创建节点,并创建ziplist,插入该元素到ziplist
  • 3.判断node节点对应的压缩列表是否能够容纳得下要添加的元素,即node节点是否已满,用来设置变量full
  • 4.判断是否在该quicklistNode的ziplist的尾部添加,并判断该quicklistNode的下一节点的ziplist是否已满
  • 5.判断是否在该quicklistNode的ziplist的头部添加,并判断该quicklistNode的前驱节点的ziplist是否已满
REDIS_STATIC void _quicklistInsert(quicklist *quicklist, quicklistEntry *entry,void *value, const size_t sz, int after) {//........................................../* Now determine where and how to insert the new element */if (!full && after) {//6. 当前节点的zipList不满,并且是在当前位置的后面插入D("Not full, inserting after current position.");quicklistDecompressNodeForUse(node);    //当前节点解压缩//entry->zi是ziplist的一个entry,返回entry->zi的下一个ziplist的entryunsigned char *next = ziplistNext(node->zl, entry->zi);if (next == NULL) {node->zl = ziplistPush(node->zl, value, sz, ZIPLIST_TAIL);} else {node->zl = ziplistInsert(node->zl, next, value, sz);}node->count++;quicklistNodeUpdateSz(node);//添加完元素后再根据node->recompress判断是否对压缩列表进行压缩quicklistRecompressOnly(quicklist, node);} else if (!full && !after) {//7. 当前节点的ziplist不满,在当前entry的前面插入D("Not full, inserting before current position.");quicklistDecompressNodeForUse(node);node->zl = ziplistInsert(node->zl, entry->zi, value, sz);node->count++;quicklistNodeUpdateSz(node);quicklistRecompressOnly(quicklist, node);} else if (full && at_tail && node->next && !full_next && after) {/* If we are: at tail, next has free space, and inserting after:*   - insert entry at head of next node. *///8. D("Full and tail, but next isn't full; inserting next node head");new_node = node->next;quicklistDecompressNodeForUse(new_node);new_node->zl = ziplistPush(new_node->zl, value, sz, ZIPLIST_HEAD);new_node->count++;quicklistNodeUpdateSz(new_node);quicklistRecompressOnly(quicklist, new_node);} else if (full && at_head && node->prev && !full_prev && !after) {/* If we are: at head, previous has free space, and inserting before:*   - insert entry at tail of previous node. *///9. D("Full and head, but prev isn't full, inserting prev node tail");new_node = node->prev;quicklistDecompressNodeForUse(new_node);new_node->zl = ziplistPush(new_node->zl, value, sz, ZIPLIST_TAIL);new_node->count++;quicklistNodeUpdateSz(new_node);quicklistRecompressOnly(quicklist, new_node);} else if (full && ((at_tail && node->next && full_next && after) ||(at_head && node->prev && full_prev && !after))) {/* If we are: full, and our prev/next is full, then:*   - create new node and attach to quicklist *///10. D("\tprovisioning new node...");new_node = quicklistCreateNode();new_node->zl = ziplistPush(ziplistNew(), value, sz, ZIPLIST_HEAD);new_node->count++;quicklistNodeUpdateSz(new_node);__quicklistInsertNode(quicklist, node, new_node, after);} else if (full) {/* else, node is full we need to split it. *//* covers both after and !after cases */D("\tsplitting node...");//11quicklistDecompressNodeForUse(node);new_node = _quicklistSplitNode(node, entry->offset, after);new_node->zl = ziplistPush(new_node->zl, value, sz,after ? ZIPLIST_HEAD : ZIPLIST_TAIL);new_node->count++;quicklistNodeUpdateSz(new_node);__quicklistInsertNode(quicklist, node, new_node, after);_quicklistMergeNodes(quicklist, node);}quicklist->count++;
}

这部分主要是分了几种情况来插入:

  • 6.当前节点的ziplist没满,并在当前entry的后面插入
  • 7.当前节点的ziplist没满,并在当前entry的前面插入
  • 8.当前节点的ziplist已满、要添加在尾部、并且后移节点是存在的、后一节点的ziplist没满,那就添加到后一节点对应的ziplist的第一个entry的前面
  • 9.当前节点的ziplist已满、要添加在头部、并且前一节点存在、前一节点的ziplist没满,就添加到前一节点的ziplist的尾部
  • 10.当前节点的ziplist已满、插入的位置是在头/尾的、并且当前节点的前/后节点的ziplist已满,则需要创建新的quicklistNode来存放要放的元素。
  • 11.当前节点的ziplist已满,但是插入的位置不在两端的,则要从插入位置把当前节点分裂成两个节点

5.删除元素 

 快速列表删除元素有两个函数 quicklistDelEntry 和 quicklistDelRange,分别是删除单个元素删除某个区间的元素。

删除元素使用到了迭代器结构quicklistIter,需要更新迭代器对应的节点等信息。

/* Delete one element represented by 'entry'*/
void quicklistDelEntry(quicklistIter *iter, quicklistEntry *entry) {quicklistNode *prev = entry->node->prev;quicklistNode *next = entry->node->next;//删除元素,返回值 deleted_node 表示当前节点是否要删除。1表示该节点已删除int deleted_node = quicklistDelIndex((quicklist *)entry->quicklist,entry->node, &entry->zi);/* after delete, the zi is now invalid for any future usage. */iter->zi = NULL;/* If current node is deleted, we must update iterator node and offset. */if (deleted_node) {if (iter->direction == AL_START_HEAD) {iter->current = next;iter->offset = 0;} else if (iter->direction == AL_START_TAIL) {iter->current = prev;iter->offset = -1;}}
}REDIS_STATIC int quicklistDelIndex(quicklist *quicklist, quicklistNode *node,unsigned char **p) {int gone = 0;//删除 node 节点对应的压缩列表 p 位置的entry,返回新的zipListnode->zl = ziplistDelete(node->zl, p);node->count--;if (node->count == 0) {gone = 1;__quicklistDelNode(quicklist, node);//当前节点的ziplist的entry个数为0,就删除该节点} else {quicklistNodeUpdateSz(node);    //更新该节点的ziplist的总长度大小}quicklist->count--;/* If we deleted the node, the original node is no longer valid */return gone ? 1 : 0;
}

6.查找元素

Redis中没有提供直接查找元素的API。查找元素是通过遍历查找的,这就需要通过上面所讲的迭代器quicklistIter

quicklistIter *iter = quicklistGetIterator(ql, AL_START_HEAD);
quicklistEntry entry;
int i = 0;
while (quicklistNext(iter, &entry)) {   //获取迭代器中的下一个元素//比较当前的压缩列表节点存储的元素与所要查找的是否相同if (quicklistCompare(entry.zi, (unsigned char *)"bar", 3)) {//进行一些操作...........}i++;
}

总结 quicklist的特性

  • 其是一个节点为ziplist的双端链表
  • 节点采用了ziplist,解决了传统链表的内存占用和易产生内存碎片问题
  • 对比单个ziplist,quicklist使用了多个ziplist,那每个ziplist的entry个数就可以控制的比较小,解决了连续空间申请效率和ziplist变更的时间复杂度过于大的问题
  • 中间节点可以压缩,进一步节省了内存

这篇关于快速列表quicklist的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/896649

相关文章

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

把Python列表中的元素移动到开头的三种方法

《把Python列表中的元素移动到开头的三种方法》在Python编程中,我们经常需要对列表(list)进行操作,有时,我们希望将列表中的某个元素移动到最前面,使其成为第一项,本文给大家介绍了把Pyth... 目录一、查找删除插入法1. 找到元素的索引2. 移除元素3. 插入到列表开头二、使用列表切片(Lis

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert