基于 OpenHarmony 音符检测实现原理

2024-04-12 04:20

本文主要是介绍基于 OpenHarmony 音符检测实现原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、音符检测的基本原理

本文基于 OpenHarmony 开源系统提供了一种音符检测的原理方法,结合多首音乐,运用了 python 和 C++ 两种编程环境实现了预期的检出效果。旨在为振动马达(vibrator)提供音乐节奏感的触觉效果,代码所在目录 .\base\sensors\sensor\vibration_convert。

先从 python 实现说起,Librosa 关于音符检测主要用到了两个函数,一个是 onset_strength(),负责生成包含音符产生的频率突变的包络线,如蓝色线条所示。另一个是 onset_detect(),主要运用峰点检测找到每个音符的位置,如黄色线条所示。

图 1 音符检测包络图
包含有用的频率突变的包络线是音符检测的核心所在。傅里叶变换能够得到全部信号采样的频谱图,即每个频率的能量贡献,如图 2 所示。但是每个时刻频谱图却得不到,于是将全部采样分割成若干固定长度的窗口,每个窗口应用傅里叶变化,从而得到这一窗口的频率分布,水平轴为时间,纵轴为频率,颜色代表能量大小如图 3 所示。

图 2 整体频率分布图

图 3 时频图

每种乐器在音符产生时,前后时间片段的频率将会发生明显变化,如图 4 所示。于是将时频图相邻列做差分,将明显看到变化的频率。为了便于分析,只取正值,具有相同的效果,所以负值填零。一个时刻变化的频率有多个,如何取舍,有三种方法,平均数、中位数和联合,目前常用到的是中位数和平均数。至此,将得到任意时刻发生明显频率变化的单一能量,如图 1 蓝色线条所示。

图 4 时频图相邻列差分前后变化

二、音符检测的准确性

目前采用频谱光通量(相邻列差分)方法检测是业界公认且较为准确的方法,音符检出率仅为 70% 多。不准确的原因可能有乐器多且差异较大,信号衰减对性能的影响,颤音影响,峰点检测时不同参数的影响,这些主要是针对音乐的研究。

三、音符检测的程序流程

3.1 程序实现

音符检测功能核心就是频谱图和梅尔滤波器,频谱图的核心就是短时傅里叶变换,C++ 代码片段如下,

void STFT::stft(short*in,int length,double**out){int i,j;/*** Shfit & Copy***/for (j = 0; j < channels; j++) {for (i = 0; i < ol; i++) {buf[j][i] = buf[j][i + shift_size];}}// EOFif(length!=shift_size*channels){length = length/channels;for (i = 0; i < length; i++) {for (j = 0; j < channels; j++)buf[j][i + ol]=  (double)(in[i * channels+ j]);}for (i = length; i < shift_size; i++) {for (j = 0; j < channels; j++)buf[j][i + ol] = 0;}//continue}else{for (i = 0; i < shift_size; i++) {for (j = 0; j < channels; j++){buf[j][i + ol] = (double)(in[i * channels+ j]);}}}/*** Copy input -> hann_input buffer ***/for (i = 0; i < channels; i++)memcpy(out[i], buf[i], sizeof(double) * frame_size);// scaling for precisionif(opt_scale)for (i = 0; i < channels; i++)for (j = 0; j < frame_size; j++)out[i][j] /= MATLAB_scale;/*** Window ***/hw->Process(out, channels);/*** FFT ***/fft->FFT(out);
}

Mel 滤波器构造代码如下:

if fmax is None:fmax = float(sr) / 2# Initialize the weightsn_mels = int(n_mels)weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)# Center freqs of each FFT binfftfreqs = fft_frequencies(sr=sr, n_fft=n_fft)# 'Center freqs' of mel bands - uniformly spaced between limitsmel_f = mel_frequencies(n_mels + 2, fmin=fmin, fmax=fmax, htk=htk)fdiff = np.diff(mel_f)ramps = np.subtract.outer(mel_f, fftfreqs)for i in range(n_mels):# lower and upper slopes for all binslower = -ramps[i] / fdiff[i]upper = ramps[i + 2] / fdiff[i + 1]# .. then intersect them with each other and zeroweights[i] = np.maximum(0, np.minimum(lower, upper))if norm == "slaney":# Slaney-style mel is scaled to be approx constant energy per channelenorm = 2.0 / (mel_f[2 : n_mels + 2] - mel_f[:n_mels])weights *= enorm[:, np.newaxis]else:weights = util.normalize(weights, norm=norm, axis=-1)# Only check weights if f_mel[0] is positiveif not np.all((mel_f[:-2] == 0) | (weights.max(axis=1) > 0)):# This means we have an empty channel somewherewarnings.warn("Empty filters detected in mel frequency basis. ""Some channels will produce empty responses. ""Try increasing your sampling rate (and fmax) or ""reducing n_mels.",stacklevel=2,)
return weights

3.2 功能流程图

为了能让大家更好的学习鸿蒙(HarmonyOS NEXT)开发技术,这边特意整理了《鸿蒙开发学习手册》(共计890页),希望对大家有所帮助:https://qr21.cn/FV7h05

《鸿蒙开发学习手册》:

如何快速入门:https://qr21.cn/FV7h05

  1. 基本概念
  2. 构建第一个ArkTS应用
  3. ……

开发基础知识:https://qr21.cn/FV7h05

  1. 应用基础知识
  2. 配置文件
  3. 应用数据管理
  4. 应用安全管理
  5. 应用隐私保护
  6. 三方应用调用管控机制
  7. 资源分类与访问
  8. 学习ArkTS语言
  9. ……

基于ArkTS 开发:https://qr21.cn/FV7h05

  1. Ability开发
  2. UI开发
  3. 公共事件与通知
  4. 窗口管理
  5. 媒体
  6. 安全
  7. 网络与链接
  8. 电话服务
  9. 数据管理
  10. 后台任务(Background Task)管理
  11. 设备管理
  12. 设备使用信息统计
  13. DFX
  14. 国际化开发
  15. 折叠屏系列
  16. ……

鸿蒙开发面试真题(含参考答案):https://qr18.cn/F781PH

鸿蒙开发面试大盘集篇(共计319页):https://qr18.cn/F781PH

1.项目开发必备面试题
2.性能优化方向
3.架构方向
4.鸿蒙开发系统底层方向
5.鸿蒙音视频开发方向
6.鸿蒙车载开发方向
7.鸿蒙南向开发方向

这篇关于基于 OpenHarmony 音符检测实现原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/896094

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja