Eland上传bge-base-zh-v1.5向量化模型到ElasticSearch中

2024-04-12 03:36

本文主要是介绍Eland上传bge-base-zh-v1.5向量化模型到ElasticSearch中,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近需要做一些向量检索,试试ES

一、准备

系统:MacOS 14.3.1

ElasticSearch:8.13.2

Kibana:8.13.2

本地单机环境,无集群,也不基于Docker

BGE是一个常见的文本转向量的模型,在很多大模型RAG应用中常常能见到,但是ElasticSearch中默认没有。BGE模型有很多版本,本次采用的是bge-base-zh-v1.5。下载地址:

HuggingFace:https://huggingface.co/BAAI/bge-base-zh-v1.5

Modelscope:魔搭社区

在国内的话还是从modelscope上下载会更快一些:

git lfs install
git clone https://www.modelscope.cn/AI-ModelScope/bge-large-zh-v1.5.git

下载完后有如下文件(注:可以把其中的.git文件夹删掉以减少体积):

将下载好的文件放到用户当前目录下。

二、Kibana申请试用【机器学习】

导入其他模型必须要使用ES的Machine Learning(机器学习)功能,该功能是收费的,白金版才能使用,因此需要先点击【试用】,试用没有任何复杂的操作和套路,直接点击就行(试用期限为一个月)。

点【模型管理】->【已训练模型】,初始状态下内置以下几个模型:

三、安装Eland工具上传模型

新建终端,安装Eland

pip install eland

安装完后直接运行以下命令:

eland_import_hub_model --url https://XX.XXX.XXX.XXX:9200 -u elastic -p XXXXXXXXX --ca-cert /Users/XXXXXXX/elasticsearch-8.13.2/config/certs/http_ca.crt --hub-model-id 'bge-large-zh-v1.5' --task-type text_embedding --start

换行模式: 

eland_import_hub_model --url https://XX.XXX.XXX.XXX:9200 \
-u elastic -p XXXXXXXXX \
--ca-cert /Users/XXXXXXX/elasticsearch-8.13.2/config/certs/http_ca.crt \
--hub-model-id 'bge-large-zh-v1.5' \
--task-type text_embedding \
--start

逐行解释: 

eland_import_hub_model                        -- 上传本地或HuggingFace模型到ES中

--url https://XX.XXX.XXX.XXX:9200        --指定ES地址,注意:用https,且尽量用真实的IP地址,不要用localhost

-u elastic -p XXXXXXXXX                       --指定用户名和密码

--ca-cert /Users/XXXXXXX/elasticsearch-8.13.2/config/certs/http_ca.crt     --指定证书路径

--hub-model-id 'bge-large-zh-v1.5'          --指定上传的模型的本地路径,注意:前面不要带/

--task-type text_embedding                     --指定上传的模型的类型,BGE是一个embedding模型

--start                                                       --开始

--hub-model-id 'bge-large-zh-v1.5',这是上传本地模型的写法,如果本地有的话,就不会再去HuggingFace上下载了,免得需要科学上网不好办。

运行完毕后可看到上传成功的信息:

----------------------------------------------------------

注意事项

实际不会像上面一样一帆风顺,运行eland_import_hub_model这一步可能会出现若干问题,往往会令人抓狂,网上相关的资料也比较少。笔者遇到了如下几个问题:

问题1. zsh: no matches found: XXXXX

解决方案:

打开.zshrc

vi ~/.zshrc

添加以下内容:

setopt no_nomatch

:wq保存后,再运行以下命令生效:

source ~/.zshrc

问题2:出现elastic_transport.ConnectionError

具体报错信息:

elastic_transport.ConnectionError: Connection error caused by: ProtocolError(('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')))

这个问题是最复杂的,网上找了很久都没有解决方案。

原因:因为要使用机器学习的功能,开了试用,必须配置x-pack,因此也必须要在用Eland传输数据时指定安全证书。因为官网的Eland示例里是不包含证书的,因此一直都没注意到,直到看到这篇文章后才意识到是证书的问题:使用 Elasticsearch 检测抄袭 (二)。

解决方案:

x-pack的配置在elasticsearch.yml中,这两行默认都是true,不用更改。

指定证书:

--ca-cert /Users/XXXXXXX/elasticsearch-8.13.2/config/certs/http_ca.crt

注意注意:此时千万不要随便瞎改elasticsearch.yml和kibana.yml中的其他配置。

问题3:ValueError: TLS options require scheme to be 'https'

raise ValueError("TLS options require scheme to be 'https'")

ValueError: TLS options require scheme to be 'https'

原因:--url http://XX.XXX.XXX.XXX:9200的URL中没有用https。

解决方案:URL改为用https即可。

参考:Import the trained model and vocabulary | Machine Learning in the Elastic Stack [8.13] | Elastic

四、Kibana中查看

至此模型已经上传成功,启动或刷新Kibana,在其中查看。

点到【模型管理】->【已训练模型】,发现有如下信息(提示:需要同步 ML 作业和已训练模型):

点击【同步作业和已训练模型】->【同步】

同步完后即可看到多了一行,显示状态为“已部署”:

~~至此,bge-base-zh-v1.5模型已成功导入ES,待后续使用啦~~

-----------------------------------------------------------------------------------------------------------

五、其他错误的尝试

本来想看能不能不用Eland,直接把模型放到一个固定的路径下,让ES启动时去加载,也就是采用file-based上传的方式,实际不太行

参考:ELSER – Elastic Learned Sparse EncodeR | Machine Learning in the Elastic Stack [8.13] | Elastic

切换到elasticsearch-8.13.2/config目录下,新建models文件夹

把下载好的bge模型整个放到models下

编辑elasticsearch-8.13.2/config下的elasticsearch.yml文件,增加一行并保存:

xpack.ml.model_repository: file://${path.home}/config/models/

重启ES和Kibana,发现【模型管理】->【已训练模型】下啥都没变化。

这篇关于Eland上传bge-base-zh-v1.5向量化模型到ElasticSearch中的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/895995

相关文章

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

GitLab文件的上传与下载方式

《GitLab文件的上传与下载方式》:本文主要介绍GitLab文件的上传与下载方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录GitLab 项目拉取到本地GitLab 项目上传方法方法 1:本地项目未初始化Git方法 2:本地项目已初始化GitGitLab 上

Nginx 413修改上传文件大小限制的方法详解

《Nginx413修改上传文件大小限制的方法详解》在使用Nginx作为Web服务器时,有时会遇到客户端尝试上传大文件时返回​​413RequestEntityTooLarge​​... 目录1. 理解 ​​413 Request Entity Too Large​​ 错误2. 修改 Nginx 配置2.1

Java应用如何防止恶意文件上传

《Java应用如何防止恶意文件上传》恶意文件上传可能导致服务器被入侵,数据泄露甚至服务瘫痪,因此我们必须采取全面且有效的防范措施来保护Java应用的安全,下面我们就来看看具体的实现方法吧... 目录恶意文件上传的潜在风险常见的恶意文件上传手段防范恶意文件上传的关键策略严格验证文件类型检查文件内容控制文件存储

Java实现MinIO文件上传的加解密操作

《Java实现MinIO文件上传的加解密操作》在云存储场景中,数据安全是核心需求之一,MinIO作为高性能对象存储服务,支持通过客户端加密(CSE)在数据上传前完成加密,下面我们来看看如何通过Java... 目录一、背景与需求二、技术选型与原理1. 加密方案对比2. 核心算法选择三、完整代码实现1. 加密上

在React聊天应用中实现图片上传功能

《在React聊天应用中实现图片上传功能》在现代聊天应用中,除了文字和表情,图片分享也是一个重要的功能,本文将详细介绍如何在基于React的聊天应用中实现图片上传和预览功能,感兴趣的小伙伴跟着小编一起... 目录技术栈实现步骤1. 消息组件改造2. 图片预览组件3. 聊天输入组件改造功能特点使用说明注意事项

springboot上传zip包并解压至服务器nginx目录方式

《springboot上传zip包并解压至服务器nginx目录方式》:本文主要介绍springboot上传zip包并解压至服务器nginx目录方式,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录springboot上传zip包并解压至服务器nginx目录1.首先需要引入zip相关jar包2.然

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA