llama-factory SFT系列教程 (一),大模型 API 部署与使用

2024-04-12 01:04

本文主要是介绍llama-factory SFT系列教程 (一),大模型 API 部署与使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 背景
    • 简介
      • 难点
    • 前置条件
    • 1. 大模型 api 部署
    • 下一步阅读

背景

本来今天没有计划学 llama-factory,逐步跟着github的文档走,发现这框架确实挺方便,逐渐掌握了一些。
最近想使用 SFT 微调大模型,llama-factory 是使用非常广泛的大模型微调框架;

简介

基于 llama_factory 微调 qwen/Qwen-7B,qwen/Qwen-7B-Chat
我使用的是 qwen/Qwen-7B,如果追求对话效果qwen/Qwen-7B-Chat的效果会好一点;

本系列的主要工作如下:

  1. 大模型 api 部署;直接部署开源大模型体验一下;
  2. 增加自定义数据集;为实现SFT准备数据;
  3. 大模型 lora 微调;
  4. 原始模型 + 微调后的lora插件,完成 api 部署;

使用 llama_factory 的 API 部署有 vllm加速推理;

难点

可能遇到的一些难点:
llama_factory 默认从 Huggingface下载模型,要改为从modelscope下载模型权重;

前置条件

llama_factory 装包

git clone https://github.com/hiyouga/LLaMA-Factory.git
# conda create -n llama_factory python=3.10
# conda activate llama_factory
cd LLaMA-Factory
pip install -e .[metrics]

If you have trouble with downloading models and datasets from Hugging Face, you can use ModelScope.

export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows

1. 大模型 api 部署

虽然我执行了这条语句 export USE_MODELSCOPE_HUB=1 以为切换到 modelscope的下载源了;
但是 填写模型名称 --model_name_or_path qwen/Qwen-7B,还是会从 huggingface下载模型权重;于是我填写本地绝对路径的方式;

下载模型权重:

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('qwen/Qwen-7B')
model_dir

输出模型的下载地址如下:

/mnt/workspace/.cache/modelscope/qwen/Qwen-7B

切换目录到刚才从github下载的 llama-factory 文件夹

cd LLaMA-Factory

执行 API 部署脚本,本文选择 api 而不是网页,因为API的用途更广,可供python程序调用,而网页只能与用户交互。

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python src/api_demo.py \
--model_name_or_path /mnt/workspace/.cache/modelscope/qwen/Qwen-7B \
--template qwen 
--infer_backend vllm 
--vllm_enforce_eager

可以注意到 LLaMA-Factory 在模型推理时,使用了 vllm 加速;
不出意外的话,经过一段时间的模型权重加载,看到下述图片展示的状态时,那么 API 便部署成功了;
在这里插入图片描述

现在如何给 API 接口传参呢?是不是有点不知所措!
不用急,在图片的红框中,笔者已经给大家标出来了,http://localhost:8000/docs 便是API 的接口文档说明;

有同学会说:“我使用的云端服务器,而且还没有公网 ip,我该那怎么访问这个文档呢?”
笔者:直接点击便可访问,该文档做了内网穿透;

比如,我点击后,弹出了如下页面:https://dsw-gateway-cn-beijing.data.aliyun.com/dsw-70173/proxy/8000/docs

该 API 的文档页面如下图所示:
在这里插入图片描述

下述是官方给的请求体参数

{"model": "string","messages": [{"role": "user","content": "string","tool_calls": [{"id": "call_default","type": "function","function": {"name": "string","arguments": "string"}}]}],"tools": [{"type": "function","function": {"name": "string","description": "string","parameters": {}}}],"do_sample": true,"temperature": 0,"top_p": 0,"n": 1,"max_tokens": 0,"stream": false
}

笔者把下述的请求保存在1.sh文件中,因为下述请求体太长了,在sh文件中进行编辑方便一点;

curl -X 'POST' \'http://0.0.0.0:8000/v1/chat/completions' \-H 'accept: application/json' \-H 'Content-Type: application/json' \-d '{"model": "string","messages": [{"role": "user","content": "你能帮我做一些什么事情?","tool_calls": [{"id": "call_default","type": "function","function": {"name": "string","arguments": "string"}}]}],"tools": [{"type": "function","function": {"name": "string","description": "string","parameters": {}}}],"do_sample": true,"temperature": 0,"top_p": 0,"n": 1,"max_tokens": 128,"stream": false
}'

执行bash 1.sh 便可获得大模型生成的回答了;
在这里插入图片描述
在 API 文档中,还有其他的接口,请读者自行探索。

下一步阅读

还有如下工作敬请期待:

  1. 增加自定义数据集;为实现SFT准备数据;
  2. 大模型 lora 微调;
  3. 原始模型 + 微调后的lora插件,完成 api 部署;

这篇关于llama-factory SFT系列教程 (一),大模型 API 部署与使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/895676

相关文章

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用