redis缓存 ★代码★ 实战【红锁问题(主从同步)、分布锁性能优化、缓存数据冷热分离、大量缓存重建、双写一致问题】

本文主要是介绍redis缓存 ★代码★ 实战【红锁问题(主从同步)、分布锁性能优化、缓存数据冷热分离、大量缓存重建、双写一致问题】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

redis缓存实战

    • 主从同步时 主节点挂了
    • 分布式锁性能提升
    • 缓存数据冷热分离问题
    • 大量缓存重建问题
    • 双写一致问题
  • 实战
    • 创建数据放入缓存
    • 更新数据然后放入缓存(读写锁优化)
    • 查询数据
      • 1. 判断缓存中是否已经有数据
      • 2. 如果没有,则会查数据库(上分布锁)
      • 3. 再次查询是否缓存中已经有了(因为排队查询获取锁的时候 可能前面的已经创建好了)
      • 4. 如果没有则读写锁 获取数据(因为上面的锁是重入锁,所以在这还要设置一个读写锁)
  • 代码

主从同步时 主节点挂了

  1. redlock解决中出现的问题
  2. zookeeper解决办法

分布式锁性能提升

  1. 使用分段锁
  2. 使用读写锁

缓存数据冷热分离问题

使用锁过期+锁分离

大量缓存重建问题

使用分布锁解决

双写一致问题

使用分布锁解决

实战

创建数据放入缓存

    @Transactionalpublic Product create(Product product) {Product productResult = productDao.create(product);redisUtil.set(RedisKeyPrefixConst.PRODUCT_CACHE + productResult.getId(), JSON.toJSONString(productResult),genProductCacheTimeout(), TimeUnit.SECONDS);return productResult;}

更新数据然后放入缓存(读写锁优化)

    @Transactionalpublic Product update(Product product) {Product productResult = null;//RLock updateProductLock = redisson.getLock(LOCK_PRODUCT_UPDATE_PREFIX + product.getId());RReadWriteLock readWriteLock = redisson.getReadWriteLock(LOCK_PRODUCT_UPDATE_PREFIX + product.getId());RLock writeLock = readWriteLock.writeLock();writeLock.lock();try {productResult = productDao.update(product);redisUtil.set(RedisKeyPrefixConst.PRODUCT_CACHE + productResult.getId(), JSON.toJSONString(productResult),genProductCacheTimeout(), TimeUnit.SECONDS);productMap.put(RedisKeyPrefixConst.PRODUCT_CACHE + productResult.getId(), product);} finally {writeLock.unlock();}return productResult;}

查询数据

1. 判断缓存中是否已经有数据

2. 如果没有,则会查数据库(上分布锁)

3. 再次查询是否缓存中已经有了(因为排队查询获取锁的时候 可能前面的已经创建好了)

4. 如果没有则读写锁 获取数据(因为上面的锁是重入锁,所以在这还要设置一个读写锁)

    public Product get(Long productId) throws InterruptedException {Product product = null;String productCacheKey = RedisKeyPrefixConst.PRODUCT_CACHE + productId;product = getProductFromCache(productCacheKey);if (product != null) {return product;}//DCLRLock hotCacheLock = redisson.getLock(LOCK_PRODUCT_HOT_CACHE_PREFIX + productId);hotCacheLock.lock();//boolean result = hotCacheLock.tryLock(3, TimeUnit.SECONDS);try {product = getProductFromCache(productCacheKey);if (product != null) {return product;}//RLock updateProductLock = redisson.getLock(LOCK_PRODUCT_UPDATE_PREFIX + productId);RReadWriteLock readWriteLock = redisson.getReadWriteLock(LOCK_PRODUCT_UPDATE_PREFIX + productId);RLock rLock = readWriteLock.readLock();rLock.lock();try {product = productDao.get(productId);if (product != null) {redisUtil.set(productCacheKey, JSON.toJSONString(product),genProductCacheTimeout(), TimeUnit.SECONDS);productMap.put(productCacheKey, product);} else {redisUtil.set(productCacheKey, EMPTY_CACHE, genEmptyCacheTimeout(), TimeUnit.SECONDS);}} finally {rLock.unlock();}} finally {hotCacheLock.unlock();}return product;}
    private Product getProductFromCache(String productCacheKey) {Product product = productMap.get(productCacheKey);if (product != null) {return product;}String productStr = redisUtil.get(productCacheKey);if (!StringUtils.isEmpty(productStr)) {if (EMPTY_CACHE.equals(productStr)) {redisUtil.expire(productCacheKey, genEmptyCacheTimeout(), TimeUnit.SECONDS);return new Product();}product = JSON.parseObject(productStr, Product.class);redisUtil.expire(productCacheKey, genProductCacheTimeout(), TimeUnit.SECONDS); //读延期}return product;}

代码

@Service
public class ProductService {@Autowiredprivate ProductDao productDao;@Autowiredprivate RedisUtil redisUtil;@Autowiredprivate Redisson redisson;public static final Integer PRODUCT_CACHE_TIMEOUT = 60 * 60 * 24;public static final String EMPTY_CACHE = "{}";public static final String LOCK_PRODUCT_HOT_CACHE_PREFIX = "lock:product:hot_cache:";public static final String LOCK_PRODUCT_UPDATE_PREFIX = "lock:product:update:";public static Map<String, Product> productMap = new ConcurrentHashMap<>();@Transactionalpublic Product create(Product product) {Product productResult = productDao.create(product);redisUtil.set(RedisKeyPrefixConst.PRODUCT_CACHE + productResult.getId(), JSON.toJSONString(productResult),genProductCacheTimeout(), TimeUnit.SECONDS);return productResult;}@Transactionalpublic Product update(Product product) {Product productResult = null;//RLock updateProductLock = redisson.getLock(LOCK_PRODUCT_UPDATE_PREFIX + product.getId());RReadWriteLock readWriteLock = redisson.getReadWriteLock(LOCK_PRODUCT_UPDATE_PREFIX + product.getId());RLock writeLock = readWriteLock.writeLock();writeLock.lock();try {productResult = productDao.update(product);redisUtil.set(RedisKeyPrefixConst.PRODUCT_CACHE + productResult.getId(), JSON.toJSONString(productResult),genProductCacheTimeout(), TimeUnit.SECONDS);productMap.put(RedisKeyPrefixConst.PRODUCT_CACHE + productResult.getId(), product);} finally {writeLock.unlock();}return productResult;}public Product get(Long productId) throws InterruptedException {Product product = null;String productCacheKey = RedisKeyPrefixConst.PRODUCT_CACHE + productId;product = getProductFromCache(productCacheKey);if (product != null) {return product;}//DCLRLock hotCacheLock = redisson.getLock(LOCK_PRODUCT_HOT_CACHE_PREFIX + productId);hotCacheLock.lock();//boolean result = hotCacheLock.tryLock(3, TimeUnit.SECONDS);try {product = getProductFromCache(productCacheKey);if (product != null) {return product;}//RLock updateProductLock = redisson.getLock(LOCK_PRODUCT_UPDATE_PREFIX + productId);RReadWriteLock readWriteLock = redisson.getReadWriteLock(LOCK_PRODUCT_UPDATE_PREFIX + productId);RLock rLock = readWriteLock.readLock();rLock.lock();try {product = productDao.get(productId);if (product != null) {redisUtil.set(productCacheKey, JSON.toJSONString(product),genProductCacheTimeout(), TimeUnit.SECONDS);productMap.put(productCacheKey, product);} else {redisUtil.set(productCacheKey, EMPTY_CACHE, genEmptyCacheTimeout(), TimeUnit.SECONDS);}} finally {rLock.unlock();}} finally {hotCacheLock.unlock();}return product;}private Integer genProductCacheTimeout() {return PRODUCT_CACHE_TIMEOUT + new Random().nextInt(5) * 60 * 60;}private Integer genEmptyCacheTimeout() {return 60 + new Random().nextInt(30);}private Product getProductFromCache(String productCacheKey) {Product product = productMap.get(productCacheKey);if (product != null) {return product;}String productStr = redisUtil.get(productCacheKey);if (!StringUtils.isEmpty(productStr)) {if (EMPTY_CACHE.equals(productStr)) {redisUtil.expire(productCacheKey, genEmptyCacheTimeout(), TimeUnit.SECONDS);return new Product();}product = JSON.parseObject(productStr, Product.class);redisUtil.expire(productCacheKey, genProductCacheTimeout(), TimeUnit.SECONDS); //读延期}return product;}}

这篇关于redis缓存 ★代码★ 实战【红锁问题(主从同步)、分布锁性能优化、缓存数据冷热分离、大量缓存重建、双写一致问题】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/894356

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in