【优化调度】基于matlab粒子群算法求解梯级水电站调度优化问题【含Matlab源码 767期】

本文主要是介绍【优化调度】基于matlab粒子群算法求解梯级水电站调度优化问题【含Matlab源码 767期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、粒子群算法简介

1 粒子群算法的概念
粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解.
PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。

2 粒子群算法分析
2.1基本思想

粒子群算法通过设计一种无质量的粒子来模拟鸟群中的鸟,粒子仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的方向。每个粒子在搜索空间中单独的搜寻最优解,并将其记为当前个体极值,并将个体极值与整个粒子群里的其他粒子共享,找到最优的那个个体极值作为整个粒子群的当前全局最优解,粒子群中的所有粒子根据自己找到的当前个体极值和整个粒子群共享的当前全局最优解来调整自己的速度和位置。下面的动图很形象地展示了PSO算法的过程:
在这里插入图片描述
2 更新规则
PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。
在这里插入图片描述
公式(1)的第一部分称为【记忆项】,表示上次速度大小和方向的影响;公式(1)的第二部分称为【自身认知项】,是从当前点指向粒子自身最好点的一个矢量,表示粒子的动作来源于自己经验的部分;公式(1)的第三部分称为【群体认知项】,是一个从当前点指向种群最好点的矢量,反映了粒子间的协同合作和知识共享。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。以上面两个公式为基础,形成了PSO的标准形式。
在这里插入图片描述
公式(2)和 公式(3)被视为标准PSO算法。
3 PSO算法的流程和伪代码
在这里插入图片描述

⛄二、部分源代码

%------主函数源程序-周调度(main.m)
%------基本粒子群优化算法(Particle Swarm Optimization)-----------
%------名称:基本粒子群优化算法(PSO)
%------作用:求解优化问题(周调度)
%------说明:全局性,并行性,高效的群体智能算法

%------初始格式化--------------------------------------------------
tic
clear all;
clc;
format short;
%% ------给定水电站初始化条件----------------------------------------------
%------------水电站1---------------------------------------
Vmax1=901510^4; %水库容量上限(m3)
Vmin1=7000
10^4; %水库容量下限(m3)
H1=640; %水库容量初始值水位(m)
V1=(2.0554H12-2413.5002*H1+709934.65)*104 ; %水库库容与水位的关系
h1=91; %初始水库水头(m)
qr(:,1:7)=[20.4 25.2 22.1 19.3 16.4 23.3 28.6 ]; %水库来水流量(m3/s)
qmax1=44; %水库引用流量上限(m3/s)
qmin1=0; %水库引用流量下限(m3/s)
A1=9.8
10^3; %水库出力系数
k1=0.65; %发电效率
t=8.6410^4; %水库发电引用流量时间段(s)
%-----------水电站2--------------------------------------
Vmax2=2080
10^4; %水库容量上限(m3)
Vmin2=153010^4; %水库容量下限(m3)
H2=540; %水库容量初始值水位(m)
V2=(2.6408
H22-2763.6392*H2+724014.90)*104; %水库库容与水位的关系
h2=57; %初始水库水头(m)
qr(:,8:14)=[22.4 18.3 26.4 25.2 17.6 24.6 27.2]; %水库来水流量(m3/s)
qmax2=32; %水库引用流量上限(m3/s)
qmin2=0; %水库引用流量下限(m3/s)
A2=9.8*10^3; %水库出力系数
k2=0.6; %发电效率
%% 给定粒子群计算初始化条件
T=7; %周期
c1=2; %学习因子1
c2=2; %学习因子2
w1=0.9; %惯性权重
w2=0.4;
MaxIter=100; %最大迭代次数
Iter=0;
vmax=2; %最大运动速度
vmin=0; %最小运动速度
N=20; %初始化群体个体数目
%------初始化种群的个体(可以在这里限定位置和速度的范围)------------

q=zeros(N,2T); %位置随机初始化位置
v=rand(N,2
T); %速度随机初始化速度

%------适应度函数源程序(fitness.m)----------------------------

Fx1=sum((k1A1q(:,1:7).h1t/(3.610^10))‘)’; %水库1总发电量(万kWh)
Fx2=sum((k2
A2q(:,8:14).h2t/(3.610^10))‘)’; %水库2总发电量(万kWh)
Fx=Fx1+Fx2; %水库总发电量(万kWh)

%------设置当前粒子的最好位置----------------------------------

Pbest=q;
FPbest=Fx;
%------找到初始粒子的最好粒子------------------------------------
[Fgbest,r]=max(Fx);
E=Fgbest;%记录当前全局最优值
Best=q(r,:);%用于保存最优粒子位置

%% ------------------------------循环-----------------------------

while(Iter<=MaxIter)
Iter=Iter+1;

%------------------------------更新惯性权重和速度----------------------

w=((w1-w2)(MaxIter-Iter)/MaxIter)+w2;% 典型的线性递减策略
% 线性微分递减策略
% 先增后减策略
% 非线性惯性权重策略
R1=rand(N,2
T);
R2=rand(N,2*T);

%-------------------------粒子速度更新----------------------------

B=repmat(q(r,:),N,1);
v=wv+c1R1.(Pbest-q)+c2R2.*(B-q);

%-------------------------粒子速度约束----------------------------

changev=v>vmax;
v(find(changev))=vmax;
changev=v<vmin;
v(find(changev))=vmin;

%-------------------------粒子流量更新----------------------------

q=q+1.0*v;

%-------------------------各时段引用流量约束----------------------------
for i=1:7
q1=q(:,i);
changeq1=q1>qmax1;
q1(find(changeq1))=qmax1;
changeq1=q1<qmin1;
q1(find(changeq1))=qmin1;
q(:,i)=q1;
end
for i=8:14
q2=q(:,i);
changeq2=q2>qmax1;
q2(find(changeq2))=qmax1;
changeq2=q2<qmin1;
q2(find(changeq2))=qmin1;
q(:,i)=q2;
end

%-------------------------各时段库容大小(m3)----------------------------
qr1=qr(:,1:7);
qr2=qr(:,8:14);
Qr1=repmat(qr1,N,1); %----各时段来水大小
Vs1=repmat(0,N,T+1); %----各时段初始库容大小
Vj1=repmat(0,N,T); %----各时段库容大小(首末平均值)
quit1=repmat(0,N,T); %----各时段弃水大小

Qr2=repmat(qr2,N,1); %----各时段来水大小
Vs2=repmat(0,N,T+1); %----各时段初始库容大小
Vj2=repmat(0,N,T); %----各时段库容大小(首末平均值)
quit2=repmat(0,N,T); %----各时段弃水大小

%-------------------------各时段水头大小----------------------------------

for i=1:N
Vs1(i,1)=V1;
Vs2(i,1)=V2;
end

for i=1:N
for j=2:(T+1)
q1=q(:,1:7);
Vs1(i,j)=Vs1(i,(j-1))+(Qr1(i,(j-1))-q1(i,(j-1)))*t;

if Vs1(i,j)>=Vmax1quit1(i,j-1)= Vs1(i,j)-Vmax1;Vs1(i,j)=Vmax1;
end
if Vs1(i,j)<=Vmin1

q1(i,j-1)=(Vs1(i,j)-Vmin1+Qr1(i,j-1)*t)/(t);
Vs1(i,j)=Vmin1;
end
end
end

  for i=1:N for j=2:(T+1)q2=q(:,8:14);
Vs2(i,j)=Vs2(i,(j-1))+(Qr2(i,(j-1))-q2(i,(j-1)))*t+quit1(i,(j-1))+q1(i,j-1)*t;
if Vs2(i,j)>=Vmax2quit2(i,j-1)= Vs2(i,j)-Vmax2;Vs2(i,j)=Vmax2; 
endif Vs2(i,j)<=Vmin2

q2(i,j-1)=(Vs2(i,j)-Vmin2+Qr2(i,j-1)*t)/(t);
Vs2(i,j)=Vmin2;
end
end
end

for i=1:N
for j=1:T
Vj1(i,j)=(Vs1(i,j)+Vs1(i,j+1))/2;
Vj2(i,j)=(Vs2(i,j)+Vs2(i,j+1))/2;
end
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【优化调度】基于matlab粒子群算法求解梯级水电站调度优化问题【含Matlab源码 767期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893444

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja