机器人路径规划:基于移动机器人路径规划的Q-learning算法,可以自定义地图,修改起始点,提供MATLAB代码

本文主要是介绍机器人路径规划:基于移动机器人路径规划的Q-learning算法,可以自定义地图,修改起始点,提供MATLAB代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Q-learning算法

Q-learning算法是强化学习算法中的一种,该算法主要包含:Agent、状态、动作、环境、回报和惩罚。Q-learning算法通过机器人与环境不断地交换信息,来实现自我学习。Q-learning算法中的Q表是机器人与环境交互后的结果,因此在Q-learning算法中更新Q表就是机器人与环境的交互过程。机器人在当前状态s(t)下,选择动作a,通过环境的作用,形成新的状态s(t+1),并产生回报或惩罚r(t+1),通过式(1)更新Q表后,若Q(s,a)值变小,则表明机器人处于当前位置时选择该动作不是最优的,当下次机器人再次处于该位置或状态时,机器人能够避免再次选择该动作action. 重复相同的步骤,机器人与环境之间不停地交互,就会获得到大量的数据,直至Q表收敛。QL算法使用得到的数据去修正自己的动作策略,然后继续同环境进行交互,进而获得新的数据并且使用该数据再次改良它的策略,在多次迭代后,Agent最终会获得最优动作。在一个时间步结束后,根据上个时间步的信息和产生的新信息更新Q表格,Q(s,a)更新方式如式(1):

式中:st为当前状态;r(t+1)为状态st的及时回报;a为状态st的动作空间;α为学习速率,α∈[0,1];γ为折扣速率,γ∈[0,1]。当α=0时,表明机器人只向过去状态学习,当α=1时,表明机器人只能学习接收到的信息。当γ=1时,机器人可以学习未来所有的奖励,当γ=0时,机器人只能接受当前的及时回报。

每个状态的最优动作通过式(2)产生:

Q-learning算法的搜索方向为上下左右四个方向,如下图所示:

Q-learning的训练过程如下:

1. 初始化Q值函数,将所有状态-动作对的Q值初始化为0。

2. 在每个时间步,根据当前状态选择一个动作。可以使用ε-greedy策略来平衡探索和利用。

3. 执行选择的动作,并观察环境返回的奖励和下一个状态。

4. 根据Q值函数的更新规则更新Q值。Q值的更新公式为:Q(s, a) = Q(s, a) + α * (r + γ * max(Q(s', a')) - Q(s, a)),其中α是学习率,γ是折扣因子,r是奖励,s是当前状态,a是选择的动作,s'是下一个状态,a'是在下一个状态下选择的动作。

5. 重复步骤2-4,直到达到停止条件。

Q-learning算法基本原理参考文献:

[1]王付宇,张康,谢昊轩等.基于改进Q-learning算法的移动机器人路径优化[J].系统工程,2022,40(04):100-109.

二、部分代码

close all
clear
clc
global maze2D;
global tempMaze2D;
NUM_ITERATIONS =500; % 最大训练次数(可以修改)
DISPLAY_FLAG = 0; % 是否显示(1 显示; 0 不显示)注意:设置为0运行速度更快
CurrentDirection = 4; % 当前机器人的朝向(1-4具体指向如下) 机器人只能上下左右移动,且每次只能移动一格,移动前需要判断是否转向
% 1 - means robot facing up
% 2 - means robot facing left
% 3 - means robot facing right
% 4 - means robot facing down%% 起始点 坐标
startX=20;startY=1;
goalX=1;goalY=20;
%% 导入地图
data1=load('data.txt');
data1(find(data1==0))=50;
data1(find(data1==1))=0;
data1(startX,startY)=70;
data1(goalX,goalY)=100;
maze2D=data1;
orgMaze2D = maze2D;
tempMaze2D = orgMaze2D;
CorlorStr='gray';

三、部分结果

(1)第一次运行结果

白色栅格表示无障碍物,黑色栅格则表示有障碍物

机器人最终路径:
    20     1
    19     1
    19     2
    18     2
    17     2
    17     3
    17     4
    17     5
    16     5
    15     5
    14     5
    13     5
    13     6
    12     6
    11     6
    10     6
    10     7
     9     7
     9     8
     9     9
     9    10
     8    10
     7    10
     7    11
     7    12
     6    12
     5    12
     4    12
     3    12
     3    13
     2    13
     1    13
     1    14
     1    15
     1    16
     1    17
     1    18
     1    19
     1    20

机器人最终路径长度为 38
机器人在最终路径下的转向及移动次数为 71

(2)第二次运行结果

白色栅格表示无障碍物,黑色栅格则表示有障碍物

机器人最终路径:
    20     1
    19     1
    18     1
    18     2
    17     2
    17     3
    17     4
    17     5
    17     6
    16     6
    15     6
    15     7
    15     8
    15     9
    15    10
    14    10
    14    11
    14    12
    13    12
    12    12
    11    12
    10    12
     9    12
     9    13
     9    14
     9    15
     8    15
     8    16
     8    17
     8    18
     8    19
     7    19
     6    19
     5    19
     4    19
     4    20
     3    20
     2    20
     1    20

机器人最终路径长度为 38
机器人在最终路径下的转向及移动次数为 68

四、完整MATLAB代码

见下方名片

这篇关于机器人路径规划:基于移动机器人路径规划的Q-learning算法,可以自定义地图,修改起始点,提供MATLAB代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/892870

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

利用Python把路径转为绝对路径的方法

《利用Python把路径转为绝对路径的方法》在Python中,如果你有一个相对路径并且想将其转换为绝对路径,你可以使用Path对象的resolve()方法,Path是Python标准库pathlib中... 目录1. os.path.abspath 是什么?怎么用?基本用法2. os.path.abspat

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill