容斥原理+欧拉函数+抽屉原理

2024-04-10 18:38

本文主要是介绍容斥原理+欧拉函数+抽屉原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(1)容斥原理 :重要应用 求出一个数n在区间[1,m]里面有多少个数与它互质。假设数据不超过int型。

 

实现过程分为两步:

1, 求出m的质因子 并保存在数组里面;

2, 求出区间[1,n]里面有多少个数与m不互质。

 

代码:

 
  1. #include <cstdio>

  2. #include <cmath>

  3. int p[10];//保存质因子 int型n不会超过10个

  4. int k;//记录质因子个数

  5. void getp(int n)//求出n的质因子

  6. {

  7. int i;

  8. k = 0;//初始化

  9. for(i = 2; i*i <= n; i++)

  10. {

  11. if(n % i == 0)

  12. {

  13. p[k++] = i;//保存质因子

  14. while(n % i == 0)

  15. n /= i;

  16. }

  17. }

  18. if(n > 1) p[k++] = n;//本身是质数

  19. }

  20. int nop(int m)//求出区间[1,m]里面有多少个数与n不互质

  21. {

  22. int top = 0;//队列顶点

  23. int que[10100];

  24. int i, j, t;

  25. que[top++] = -1;//队列数组保存n所有质因子任意不相同组合的乘积

  26. for(i = 0; i < k; i++)

  27. {

  28. t = top;//利于下面计算

  29. for(j = 0; j < t; j++)

  30. {

  31. que[top++] = que[j] * p[i] * (-1);//奇加偶减

  32. }

  33. }

  34. int sum = 0;//统计个数

  35. for(i = 1; i < top; i++)

  36. sum += m / que[i];

  37. return sum;

  38. }

  39. int main()

  40. {

  41. int n, m;

  42. while(scanf("%d%d", &n, &m), n||m)//求区间[1,m]内有多少个数与n互质

  43. {

  44. getp(n);

  45. printf("%d\n", m-nop(m));

  46. }

  47. return 0;

  48. }


上面的代码实现是很简单的,也是很好理解的。 网上还有DFS版本,位运算版本的以及递归版本的,这里再给个递归的(另外本人理解不太透彻),至于其它两个有兴趣的可以上网查下。

 

递归版本:

 

 
  1. #include <cstdio>

  2. #include <cmath>

  3. int p[10];//保存质因子 int型n不会超过10个

  4. int k;//记录质因子个数

  5. void getp(int n)//求出n的质因子

  6. {

  7. int i;

  8. k = 0;//初始化

  9. for(i = 2; i*i <= n; i++)

  10. {

  11. if(n % i == 0)

  12. {

  13. p[k++] = i;//保存质因子

  14. while(n % i == 0)

  15. n /= i;

  16. }

  17. }

  18. if(n > 1) p[k++] = n;//本身是质数

  19. }

  20. int nop(int m, int t)//求出区间[1,m]里面有多少个数与n不互质

  21. {

  22. int i, sum = 0;

  23. for(i = t; i < k; i++)

  24. sum += m / p[i] - nop(m/p[i],i+1);

  25. return sum;

  26. }

  27. int main()

  28. {

  29. int n, m;

  30. while(scanf("%d%d", &n, &m), n||m)//求区间[1,m]内有多少个数与n互质

  31. {

  32. getp(n);

  33. printf("%d\n", m-nop(m, 0));

  34. }

  35. return 0;

  36. }


 

(2)欧拉函数:说白了,就是指一个数n在[1,n-1]区间有多少个数与它互质(和容斥原理一样的应用)。

比如说,euler[n] = m代表的意思是在区间[1,n-1]里面有m个数与n互质。

欧拉函数公式:(我们假设n的质因子有x,y) euler[n] = n * (1-1/x) * (1-1/y)。若有多个继续添上即可。

欧拉函数拓展:小于或等于n的数中(n > 1),与n互质的数的总和为:euler[n] * n / 2。

现给个实例:求区间[1,100]内所有数的欧拉函数。这里eu[1] = 1。我不知道会不会有一些题目eu[1] = 0。。。注意啊

 

求欧拉函数 有两个思路:

1, 筛素数打表,用数组记录每个数的欧拉函数(适用于n不是很大的情况,因为数组不能开无限大);

2, 直接求法计算单个欧拉函数,对于有些题目会比较慢(对于很大的n依然可以求解)。

 

筛素法:

 
  1. #include <cstdio>

  2. #include <cstring>

  3. #define MAX 100+1

  4. int eu[MAX];

  5. void euler()

  6. {

  7. int i, j;

  8. eu[1] = 1;//1的欧拉函数为1 看题目而定

  9. for(i = 2; i < MAX; i++)

  10. {

  11. if(!eu[i])

  12. {

  13. for(j = i; j < MAX; j += i)

  14. {

  15. if(!eu[j]) eu[j] = j;

  16. eu[j] = eu[j] * (i-1) / i;

  17. }

  18. }

  19. }

  20. }

  21. int main()

  22. {

  23. euler();

  24. for(int i = 1; i < MAX; i++)

  25. printf("%d\n", eu[i]);

  26. return 0;

  27. }



 

计算单个欧拉函数:

 

 
  1. #include <cstdio>

  2. #include <cstring>

  3. #define MAX 100+1

  4. int euler(int n)//求n的欧拉函数

  5. {

  6. int i;

  7. int eu = n;//欧拉函数

  8. for(i = 2; i*i <= n; i++)

  9. {

  10. if(n % i == 0)//质因子

  11. {

  12. eu = eu * (i-1) / i;

  13. while(n % i == 0)

  14. n /= i;//避免再次累加

  15. }

  16. }

  17. if(n > 1) eu = eu * (n-1) / n;//本身就是 质数

  18. return eu;

  19. }

  20. int main()

  21. {

  22. for(int i = 1; i < MAX; i++)

  23. printf("%d\n", euler(i));

  24. return 0;

  25. }


 

对于很多题目,容斥原理若和欧拉函数一起使用,或许会增加程序效率。

 

 

(3) 抽屉原理: 又称鸽巢原理,指的是n+1个苹果放进n个盒子里面,一定会有一个盒子有两个苹果。

定理: 一个由n个数构成的数列,总能找到若干个连续的数 使它们之和能被n整除。

证明: 对于数列里面的元素a[1],a[2],...... a[n]。我们可以构造一个数组sum[],用sum[ i ]来存储前i个元素之和(包括第i个元素)。

那么sum数组里面所有的元素只有两种情况:(1) 至少存在一个sum[ i ] 能被n整除;(2) 对于所有的sum[ i ] 都不能被n整除 。

 

情况(1):定理成立。。。

情况(2):首先我们知道sum数组里面有n个元素,又因为它们都不能被n整除,那么我们可以得到以下信息:任意的(sum[i] %n)都非0且结果都在(1到n-1范围里面)

                  这样的话--> n个结果在  1到n-1 范围内,必然存在两个相等的结果。而这两个相同结果所对应的sum[] 之差 必定能被 n整除。

 

证毕。

 

对于抽屉原理,可以有以下拓展:(1) 数列里面元素个数只要大于或者等于n也成立 (2) 找到的 若干个数 不是连续的也成立。

 

转自:https://blog.csdn.net/chenzhenyu123456/article/details/46458991

这篇关于容斥原理+欧拉函数+抽屉原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891828

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数