中国500米分辨率年最大EVI数据集

2024-04-10 14:44

本文主要是介绍中国500米分辨率年最大EVI数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

     增强型植被指数(EVI)是在归一化植被指数(NDVI)改善出来的,根据大气校正所包含的影像因子大气分子、气溶胶、薄云、水汽和臭氧等因素进行全面的大气校正,EVI大气校正分三步,第一步是去云处理。第二步是大气校正处理,校正内容除了NDVI已有的瑞利散射和臭氧外,还包括大气分子、气溶胶、水汽等。第三步是进一步处理残留气溶胶影响,方法是借助蓝光和红光通过气溶胶的差异。由于输入的NIR、Red、Blue都经过比较严格的大气校正,所以在设计植被指数算式时,无须为了消除乘法性噪音而采用基于NIR/Red比值的植被指数,因此也就解决了由此引起的植被指数容易饱和以及与实际植被覆盖缺乏线性关系的问题。

    本数据集包含2000年至2023年间中国(东经112.749955°至113.225114°,北纬28.022906°至28.337638°)地区的年最大增强型植被指数(EVI)值,体现了24年间该地区植被动态的年际变化。数据源自MODIS系列遥感卫星,通过Google Earth Engine云计算平台进行处理(包括去云、云影去除)获得。本数据集以500米的空间分辨率捕捉植被的生长状态,为从长时间尺度观测植被变化提供了宝贵的数据资源。 

   数据类型tif栅格数据,数据类型为32位浮点型。反演增强型植被指数(EVI)计算公式为:     

                        EVI = G *(NIR-RED)/(NIR + C1 * RED-C2 * Blue * L)

     NIR、RED和Blue分别代表近红外波段、红光波段和蓝光波段的反射率。G、C1、C2和L参数分别为2.5、6、7.5和1.    

                    EVI = 2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))

欢迎大家关注、收藏和留言,如果您想要什么数据,可以在搜索网址地球资源数据云,我会分享更多的好的数据给大家~~~~~

以上是关于中国500米分辨率年最大EVI数据集 详情,欢迎小伙伴们一起学习和分享。

这篇关于中国500米分辨率年最大EVI数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891351

相关文章

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L