python-pytorch实现skip-gram 0.5.000【直接可运行】

2024-04-10 10:04

本文主要是介绍python-pytorch实现skip-gram 0.5.000【直接可运行】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python-pytorch实现skip-gram 0.5.000【直接可运行】

    • 参考
    • 导入包
    • 加载数据和切词
    • 获取wordList、raw_text
    • 获取vocab、vocab_size
    • word_to_idx、idx_to_word
    • 准备训练数据
    • 准备模型和参数
    • 训练模型
    • 保存模型
    • 简单预测
    • 获取训练后的词向量
    • 画图看下分布
    • 利用词向量计算相似度
      • 余弦
      • 点积

参考

https://blog.csdn.net/Metal1/article/details/132886936

https://blog.csdn.net/L_goodboy/article/details/136347947

导入包

import jieba
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from matplotlib import pyplot as plt
from sklearn.decomposition import PCA
from tqdm import tqdm, trange
torch.manual_seed(1)

加载数据和切词

# 加载停用词词表
def load_stop_words():"""停用词是指在信息检索中,为节省存储空间和提高搜索效率,在处理自然语言数据(或文本)之前或之后会自动过滤掉某些字或词"""with open('data/stopwords.txt', "r", encoding="utf-8") as f:return f.read().split("\n")# 加载文本,切词
def cut_words():stop_words = load_stop_words()with open('data/zh.txt', encoding='utf8') as f:allData = f.readlines()result = []for words in allData:c_words = jieba.lcut(words)for word in c_words:if word not in stop_words and word != "\n":result.append(word)return result# 加载文本,切词
def cut_sentense(str):stop_words = load_stop_words()with open('data/zh.txt', encoding='utf8') as f:allData = f.readlines()result = []c_words = jieba.lcut(str)for word in c_words:if word not in stop_words and word != "\n":result.append(word)return result

获取wordList、raw_text

wordList = []
data = cut_words()
data

count = 0
for words in data:if words not in wordList:wordList.append(words)
print("wordList=", wordList)raw_text = wordList
print("raw_text=", raw_text)
# 超参数
learning_rate = 0.003
# 放cuda或者cpu里
device = torch.device('cpu')
# 上下文信息,即涉及文本的前n个和后n个
context_size = 2
# 词嵌入的维度,即一个单词用多少个浮点数表示比如 the=[10.2323,12.132133,4.1219774]...
embedding_dim = 100
epoch = 10
def make_context_vector(context, word_to_ix):idxs = [word_to_ix[w] for w in context]return torch.tensor(idxs, dtype=torch.long)

获取vocab、vocab_size

# 把所有词集合转成dict
vocab = set(wordList)
vocab_size = len(vocab)
vocab,vocab_size

word_to_idx、idx_to_word

word_to_idx = {word: i for i, word in enumerate(vocab)}
idx_to_word = {i: word for i, word in enumerate(vocab)}

准备训练数据

data3 = []
window_size1=2
for i,word in enumerate(raw_text):target = raw_text[i]contexts=raw_text[max(i - window_size1, 0): min(i + window_size1 + 1, len(raw_text))]for context in contexts:if target!=context:data3.append((context,target))
data3,len(data3)

准备模型和参数

class SkipGramModel(nn.Module):def __init__(self, vocab_size, embedding_dim):super(SkipGramModel, self).__init__()self.embedding = nn.Embedding(vocab_size, embedding_dim)self.linear = nn.Linear(embedding_dim, vocab_size)def forward(self, center_word):embedded = self.embedding(center_word)output = self.linear(embedded)return outputmodel = SkipGramModel(vocab_size, embedding_dim)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

训练模型

# Training
for epoch in tqdm(range(2000)):loss_sum = 0for target,input in data3:targetidx=word_to_idx[target]inputidx=word_to_idx[input]output=model(torch.tensor(inputidx,dtype=torch.long))loss=criterion(output,torch.tensor(targetidx))optimizer.zero_grad()  # 清空梯度loss.backward()  # 反向传播optimizer.step()  # 更新参数loss_sum += loss.item()if (epoch+1) % 10 == 0:print("loss is ",loss_sum/len(data2),loss.item())

保存模型

torch.save(model.state_dict(),"skipgram.pth")

简单预测

inputidx=word_to_idx["refresh"]output=model(torch.tensor(inputidx,dtype=torch.long))
print(output.topk(4))
cc,index=output.topk(4)
idx_to_word[index[0].item()],idx_to_word[index[1].item()],idx_to_word[index[2].item()],idx_to_word[index[3].item()]def predict(centerword):inputidx=word_to_idx[centerword]output=model(torch.tensor(inputidx,dtype=torch.long))print(output.topk(4))cc,index=output.topk(4)idx_to_word[index[0].item()],idx_to_word[index[1].item()],idx_to_word[index[2].item()],idx_to_word[index[3].item()]

获取训练后的词向量

trained_vector_dic={}
for word, idx in word_to_idx.items(): # 输出每个词的嵌入向量trained_vector_dic[word]=model.embedding.weight[idx]
trained_vector_dic

画图看下分布

fig, ax = plt.subplots() 
for word, idx in word_to_idx.items():# 获取每个单词的嵌入向量vec = model.embedding.weight[:,idx].detach().numpy() ax.scatter(vec[0], vec[1]) # 在图中绘制嵌入向量的点ax.annotate(word, (vec[0], vec[1]), fontsize=12) # 点旁添加单词标签
plt.title(' 二维词嵌入 ') # 图题
plt.xlabel(' 向量维度 1') # X 轴 Label
plt.ylabel(' 向量维度 2') # Y 轴 Label
plt.show() # 显示图

利用词向量计算相似度

余弦

# https://blog.csdn.net/qq_41487299/article/details/106299882
import torch
import torch.nn.functional as F# 计算余弦相似度
cosine_similarity = F.cosine_similarity(x.unsqueeze(0), y.unsqueeze(0))print(cosine_similarity)cosine_similarity1 = F.cosine_similarity(torch.tensor(trained_vector_dic["保持数据"].unsqueeze(0)), torch.tensor(trained_vector_dic["打印信息"]).unsqueeze(0))
print(cosine_similarity1)

点积

dot_product = torch.dot(torch.tensor(trained_vector_dic["保持数据"]), torch.tensor(trained_vector_dic["打印信息"]))
x_length = torch.norm(torch.tensor(trained_vector_dic["保持数据"]))
y_length = torch.norm(torch.tensor(trained_vector_dic["打印信息"]))
similarity = dot_product / (x_length * y_length)print(similarity)
torch.tensor(trained_vector_dic["参数值"]),len(trained_vector_dic)
c1=cos(trained_vector_dic["删除"],trained_vector_dic["服务"])
print(c1)

这篇关于python-pytorch实现skip-gram 0.5.000【直接可运行】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890752

相关文章

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

基于Java和FFmpeg实现视频压缩和剪辑功能

《基于Java和FFmpeg实现视频压缩和剪辑功能》在视频处理开发中,压缩和剪辑是常见的需求,本文将介绍如何使用Java结合FFmpeg实现视频压缩和剪辑功能,同时去除数据库操作,仅专注于视频处理,需... 目录引言1. 环境准备1.1 项目依赖1.2 安装 FFmpeg2. 视频压缩功能实现2.1 主要功

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

Java调用Python脚本实现HelloWorld的示例详解

《Java调用Python脚本实现HelloWorld的示例详解》作为程序员,我们经常会遇到需要在Java项目中调用Python脚本的场景,下面我们来看看如何从基础到进阶,一步步实现Java与Pyth... 目录一、环境准备二、基础调用:使用 Runtime.exec()2.1 实现步骤2.2 代码解析三、