Adaptive Filter Learning Notes 自适应滤波学习笔记02 随机过程模型

本文主要是介绍Adaptive Filter Learning Notes 自适应滤波学习笔记02 随机过程模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是一个学习笔记系列。为督促自己看书,尽量更新。但同时也在学其他东西,也不知道能不能实现。少玩耍,多读书。

应该会慢慢改进,会慢慢补充每一个部分的笔记。

文章目录

  • Stochastic Progress and Models
    • 三个常见线性随机模型
      • 自回归模型(Autoregressive Models)
      • 滑动平均模型(Moving-Average Models)
      • 自回归滑动平均模型(Autoregressive-Moving-Average Models)
    • Wold分解定理(Wold Decomposition Theorem)
    • 选择模型的阶
      • 信息论准则(An Information-Theoretic Criterion)
      • 最小描述长度准则(Minimum Description Length Criterion)

Stochastic Progress and Models

三个常见线性随机模型

本节出现的定义高斯白噪声(white Guassian noise),自回归模型(Autoregressive Models),过程分析器(process analyzer),全零点滤波器(all-zero filter),过程产生器(process generator),全极点滤波器(all-pole filter),滑动平均模型(Moving-Average Models),自回归滑动平均模型(Autoregressive-Moving-Average Models)

高斯白噪声(white Guassian noise) E [ ν ( n ) ] = 0 , ∀ n , E [ ν ( n ) ν ( k ) ] = { σ ν 2 , k = n 0 , otherwise \mathbb{E}[\nu(n)]=0,\forall n, \mathbb{E}[\nu(n)\nu(k)]=\begin{cases} \sigma_{\nu}^2, &k=n\\ 0,&\text{otherwise} \end{cases} E[ν(n)]=0,n,E[ν(n)ν(k)]={σν2,0,k=notherwise
输入为 ν ( n ) \nu(n) ν(n),输出为 u ( n ) u(n) u(n)

输入
离散线性滤波
输出

滤波部分为 ( 模型当前输出值 ) + ( 模型之前输出值的线性组合 ) = ( 模型之前输入值及当前输入值的线性组合 ) \left(\text{模型当前输出值}\right)+\left(\text{模型之前输出值的线性组合}\right)\\ =\left(\text{模型之前输入值及当前输入值的线性组合}\right) (模型当前输出值)+(模型之前输出值的线性组合)=(模型之前输入值及当前输入值的线性组合)

自回归模型(Autoregressive Models)

u ( n ) + a 1 ∗ u ( n − 1 ) + ⋯ + a M ∗ u ( n − M ) = ν ( n ) u(n)+a_1^*u(n-1)+\dots+a_M^{*}u(n-M)=\nu(n) u(n)+a1u(n1)++aMu(nM)=ν(n)
{ a i } \{a_i\} {a

这篇关于Adaptive Filter Learning Notes 自适应滤波学习笔记02 随机过程模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890399

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

PyInstaller打包selenium-wire过程中常见问题和解决指南

《PyInstaller打包selenium-wire过程中常见问题和解决指南》常用的打包工具PyInstaller能将Python项目打包成单个可执行文件,但也会因为兼容性问题和路径管理而出现各种运... 目录前言1. 背景2. 可能遇到的问题概述3. PyInstaller 打包步骤及参数配置4. 依赖

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

springboot filter实现请求响应全链路拦截

《springbootfilter实现请求响应全链路拦截》这篇文章主要为大家详细介绍了SpringBoot如何结合Filter同时拦截请求和响应,从而实现​​日志采集自动化,感兴趣的小伙伴可以跟随小... 目录一、为什么你需要这个过滤器?​​​二、核心实现:一个Filter搞定双向数据流​​​​三、完整代码

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

将Mybatis升级为Mybatis-Plus的详细过程

《将Mybatis升级为Mybatis-Plus的详细过程》本文详细介绍了在若依管理系统(v3.8.8)中将MyBatis升级为MyBatis-Plus的过程,旨在提升开发效率,通过本文,开发者可实现... 目录说明流程增加依赖修改配置文件注释掉MyBATisConfig里面的Bean代码生成使用IDEA生

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为