【三十九】【算法分析与设计】综合练习(5),79. 单词搜索,1219. 黄金矿工,980. 不同路径 III

本文主要是介绍【三十九】【算法分析与设计】综合练习(5),79. 单词搜索,1219. 黄金矿工,980. 不同路径 III,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

79. 单词搜索

给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false

单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。

示例 1:

输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED" 输出:true

示例 2:

输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE" 输出:true

示例 3:

输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB" 输出:false

提示:

  • m == board.length

  • n = board[i].length

  • 1 <= m, n <= 6

  • 1 <= word.length <= 15

  • boardword 仅由大小写英文字母组成

进阶:你可以使用搜索剪枝的技术来优化解决方案,使其在 board 更大的情况下可以更快解决问题?

宏观地看待递归。递归函数,自己调用自己,同一个函数需要表示递归图中任何一个节点。

因此我们需要一些变量与递归函数进行绑定,这些变量帮助我们知道现在的递归函数是在递归图的哪一个节点。

其次,我们还需要能够知道如何从当前的递归节点到达孩子递归节点,这一个过程也需要一些变量的帮助。

因此我们有两个需要做的事情,第一件事是知道当前递归函数代表递归图的哪一个节点。

第二件事是知道如何从当前递归图节点到达孩子递归图节点。

bool dfs(vector<vector<char>>& board, int i, int j, int pos) {

递归函数是这样定义的,它表示当前在递归图的位置(i,j)对应的位置,它如何找到孩子递归图节点,通过pos变量,pos表示word中下一个查找的值,也就是孩子节点对应的值。

对于递归图特定节点,有四个可能的子孩子位置,分别是(i,j)位置的左边,右边,上边,下边。

左边是(i,j-1),右边是(i,j+1),上边是(i-1,j),下边是(i+1,j)。

此时思考如何剪枝,走过的路我们不走,因此需要一个visit数组,用来划分集合,一个集合是走过的路,一个集合是没有走过的路。所以只需要两个不同的值对应即可。可以思考到bool类型。

如果使用int类型,可以对应多个集合,不同的int类型值对应一个集合,例如1对应一个集合,2对应一个集合,等等以此类推。

思考递归出口,如果当前递归图节点,pos==word.size(),说明当前节点已经是最后一个单词的字母。此时直接返回就可以了。

 
class Solution {
public:bool visit[7][7];int row, col;int dx[4] = {0, 0, 1, -1};int dy[4] = {1, -1, 0, 0};string word;bool exist(vector<vector<char>>& board, string _word) {word = _word;row = board.size();col = board[0].size();for (int i = 0; i < row; i++) {for (int j = 0; j < col; j++) {if (board[i][j] == word[0]) {visit[i][j] = true;if (dfs(board, i, j, 1))return true;visit[i][j] = false;}}}return false;}bool dfs(vector<vector<char>>& board, int i, int j, int pos) {if (pos == word.size()) {return true;}for (int k = 0; k < 4; k++) {int x = i + dx[k];int y = j + dy[k];if (x >= 0 && x < row && y >= 0 && y < col && !visit[x][y] &&board[x][y] == word[pos]) {visit[x][y] = true;if (dfs(board, x, y, pos + 1))return true;visit[x][y] = false;}}return false;}
};

定义全局变量,就不需要给递归函数进行传参。

bool visit[7][7];

定义bool类型的visit数组,进行集合的划分,visit[i][j]对应(i,j)位置,true表示使用过,false表示没有使用过。

int row, col;

定义全局变量row,col分别表示行与列。

int dx[4] = {0, 0, 1, -1}; int dy[4] = {1, -1, 0, 0};

如何快速得到(i,j)位置上下左右四个方位的坐标,利用向量法。

可以知道,这四个位置分别是(i+1,j),(i-1,j),(i,j+1),(i,j-1)。

可以写成(i,j)+(1,0),(i,j)+(-1,0),(i,j)+(0,1),(i,j)+(0,-1)。

只需要表示出增量即可。

dx表示x方向的增量,dy表示y方向的增量。

dx[k],dy[k]共同表示某一个增量组合。

因此dx dy的形式,其中一个增量数组0,0,1,-1。

另一个增量数组在1,-1出现的位置只出现0。另外两个位置出现1,-1。

string word;

小技巧,将函数中的变量变成全局变量,修改名字,在名字前面添加下划线_,然后再全局变量创建一个原名,在函数中赋值过去即可。 bool exist(vector<vector<char>>& board, string _word) { word = _word; row = board.size(); col = board[0].size();

对全局变量的计算,初始化。

for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { if (board[i][j] == word[0]) { visit[i][j] = true; if (dfs(board, i, j, 1)) return true; visit[i][j] = false; } } }

遍历递归图中最开始的位置,如果找到word中第一个字符,此时这个位置就是最开始的位置。

注意维护变量,visit。因为visit是全局变量,所以需要手动回溯。

为什么需要回溯?因为这些变量共同表示递归图中某一个位置的节点,当前是这个节点,这些变量就必须维护对应的值。

但是部分节点变量在递归函数中作为形参,此时系统会自动帮我们进行回溯操作。

小技巧:如果是int char等类型,空间小的数据类型,可以放到递归函数中作为形参。

如果是vector空间大的数据类型,放到全局变量中,而不是放到递归韩式作为形参。

因为作为形参每一次都需要重新开辟空间,赋值,如果空间大的这种消耗比较大。

if (dfs(board, i, j, 1)) return true;

注意这条语句,这种用法,是递归寻找某一个特定的值的时候使用,当找到之后,就不需要再递归下去了。

如果找到了,就返回true,如果递归图中子节点找到了,当前节点就不需要再递归其他可能性了,直接返回true。

可以理解为,定义递归函数bool表示当前递归节点树,中是否能够找到。true表示找到了。

如果遍历完,没有返回true,说明所有递归图节点树都没有找到,返回false。 return false; bool dfs(vector<vector<char>>& board, int i, int j, int pos) { if (pos == word.size()) { return true; }

递归的出口,pos表示递归图子节点的可能性。pos==word.size()表示当前节点就是最后一个字母,此时找到了序列,直接返回true。

for (int k = 0; k < 4; k++) { int x = i + dx[k]; int y = j + dy[k]; if (x >= 0 && x < row && y >= 0 && y < col && !visit[x][y] && board[x][y] == word[pos]) { visit[x][y] = true; if (dfs(board, x, y, pos + 1)) return true;

如果递归图子树找到了,不需要继续递归下去了,直接返回true。

visit[x][y] = false; } } return false;

如果当前节点的所有子树都没有找到,说明当前节点也找不到,返回false。

1219. 黄金矿工

你要开发一座金矿,地质勘测学家已经探明了这座金矿中的资源分布,并用大小为 m * n 的网格 grid 进行了标注。每个单元格中的整数就表示这一单元格中的黄金数量;如果该单元格是空的,那么就是 0

为了使收益最大化,矿工需要按以下规则来开采黄金:

  • 每当矿工进入一个单元,就会收集该单元格中的所有黄金。

  • 矿工每次可以从当前位置向上下左右四个方向走。

  • 每个单元格只能被开采(进入)一次。

  • 不得开采(进入)黄金数目为 0 的单元格。

  • 矿工可以从网格中 任意一个 有黄金的单元格出发或者是停止。

示例 1:

输入:grid = [[0,6,0],[5,8,7],[0,9,0]] 输出:24 解释: [[0,6,0], [5,8,7], [0,9,0]] 一种收集最多黄金的路线是:9 -> 8 -> 7。

示例 2:

输入:grid = [[1,0,7],[2,0,6],[3,4,5],[0,3,0],[9,0,20]] 输出:28 解释: [[1,0,7], [2,0,6], [3,4,5], [0,3,0], [9,0,20]] 一种收集最多黄金的路线是:1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7。

提示:

  • 1 <= grid.length, grid[i].length <= 15

  • 0 <= grid[i][j] <= 100

  • 最多 25 个单元格中有黄金。

 
class Solution {
public:int row, col;bool visit[16][16];int ret;int getMaximumGold(vector<vector<int>>& grid) {row = grid.size(), col = grid[0].size();for (int i = 0; i < row; i++)for (int j = 0; j < col; j++) {if (grid[i][j] != 0) {visit[i][j] = true;dfs(grid, i, j, grid[i][j]);visit[i][j] = false;}}return ret;}int dx[4] = {0, 0, -1, 1}, dy[4] = {1, -1, 0, 0};void dfs(vector<vector<int>>& grid, int i, int j, int path) {ret = max(ret, path);for (int k = 0; k < 4; k++) {int x = i + dx[k], y = j + dy[k];if (x >= 0 && x < row && y >= 0 && y < col && !visit[x][y] &&grid[x][y] != 0) {visit[x][y] = true;dfs(grid, x, y, path + grid[x][y]);visit[x][y] = false;}}}
};

定义全局变量,这样就不需要给递归函数传参数了。

int row, col;

row表示行数,col表示列数。

bool visit[16][16];

划分集合,用来表示(i,j)位置是否被使用,true被使用,false没有被使用。

int ret;

记录结果。

int getMaximumGold(vector<vector<int>>& grid) {

row = grid.size(), col = grid[0].size();

给row和col初始化。

for (int i = 0; i < row; i++)

for (int j = 0; j < col; j++) {

两层for循环遍历最开始递归图的节点。

if (grid[i][j] != 0) {

visit[i][j] = true;

dfs(grid, i, j, grid[i][j]);

这里没有使用bool,返回true的用法,是因为我需要递归所有情况,找到一种情况之后还需要继续递归。

visit[i][j] = false;

手动回溯。

int dx[4] = {0, 0, -1, 1}, dy[4] = {1, -1, 0, 0};

定义增量数组,用来表示(i,j)的四个方位。

void dfs(vector<vector<int>>& grid, int i, int j, int path) {

ret = max(ret, path);

path表示递归图当前节点的有效路径。ret记录所有情况下的最大值。

for (int k = 0; k < 4; k++) {

int x = i + dx[k], y = j + dy[k];

if (x >= 0 && x < row && y >= 0 && y < col && !visit[x][y] &&

grid[x][y] != 0) {

如果x,y位置没有越界,并且没有没使用过,并且值不为0,此时是合法位置。

visit[x][y] = true;

dfs(grid, x, y, path + grid[x][y]);

visit[x][y] = false;

980. 不同路径 III

在二维网格 grid 上,有 4 种类型的方格:

  • 1 表示起始方格。且只有一个起始方格。

  • 2 表示结束方格,且只有一个结束方格。

  • 0 表示我们可以走过的空方格。

  • -1 表示我们无法跨越的障碍。

返回在四个方向(上、下、左、右)上行走时,从起始方格到结束方格的不同路径的数目

每一个无障碍方格都要通过一次,但是一条路径中不能重复通过同一个方格

示例 1:

  1. 输入:[[1,0,0,0],[0,0,0,0],[0,0,2,-1]] 输出:2 解释:我们有以下两条路径: (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2) (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)

示例 2:

  1. 输入:[[1,0,0,0],[0,0,0,0],[0,0,0,2]] 输出:4 解释:我们有以下四条路径: (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3) (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3) (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3) (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)

示例 3:

输入:[[0,1],[2,0]] 输出:0 解释: 没有一条路能完全穿过每一个空的方格一次。 请注意,起始和结束方格可以位于网格中的任意位置。

提示:

  • 1 <= grid.length * grid[0].length <= 20

 
class Solution {
public:int row, col; // 定义行数和列数int visit[21][21]; // 访问标记数组,记录网格中的位置是否被访问过int step; // 步数计数器,记录从起点到终点需要经过的格子数量int ret; // 结果计数器,记录所有满足条件的路径数量int uniquePathsIII(vector<vector<int>>& grid) {row = grid.size(), col = grid[0].size(); // 初始化行数和列数int bx, by; // 起点的坐标for (int i = 0; i < row; i++)for (int j = 0; j < col; j++) {if (grid[i][j] == 0)step++; // 如果格子为0,说明是空格,需要经过,步数加1else if (grid[i][j] == 1)bx = i, by = j; // 如果格子为1,说明是起点,记录起点坐标}step += 2; // 加上起点和终点的格子visit[bx][by] = true; // 标记起点已访问dfs(grid, bx, by, 1); // 从起点开始进行深度优先搜索return ret; // 返回所有满足条件的路径数量}int dx[4] = {1, -1, 0, 0}, dy[4] = {0, 0, 1, -1}; // 方向数组,用于实现上下左右移动void dfs(vector<vector<int>>& grid, int i, int j, int count) {if (grid[i][j] == 2) { // 如果当前格子是终点if (step == count)ret++; // 如果当前路径长度等于所需步数,结果加1return;}for (int k = 0; k < 4; k++) { // 遍历四个方向int x = i + dx[k], y = j + dy[k]; // 计算下一个格子的坐标if (x >= 0 && x < row && y >= 0 && y < col && !visit[x][y] &&grid[x][y] != -1) { // 确保下一个格子在网格内,未被访问过,且不是障碍物visit[x][y] = true; // 标记为已访问dfs(grid, x, y, count + 1); // 递归搜索下一个格子visit[x][y] = false; // 回溯,取消标记}}}
};

 

结尾

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

这篇关于【三十九】【算法分析与设计】综合练习(5),79. 单词搜索,1219. 黄金矿工,980. 不同路径 III的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/890199

相关文章

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重