python之常用builtins

2024-04-10 03:38
文章标签 python 常用 builtins

本文主要是介绍python之常用builtins,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分为class和function

1. class
1.1 class range

help(__builtins__.range)
class range(object)
 |  range(stop) -> range object
 |  range(start, stop[, step]) -> range object
 |  Return a sequence of numbers from start to stop by step.
平时我们在for循环中经常用到range,其实这里的range是类而非function
python3.x中range取代了xrange,从原来的内置函数变成了类

for num in range(4):print(num, end = ' ')
output:

0 1 2 3 
1.2 class filter
class filter(object)
 |  filter(function or None, iterable) --> filter object
 |  Return an iterator yielding those items of iterable for which function(item)
 |  is true. If function is None, return the items that are true.
values = ['1', '2', '-3', '-', '4', 'N/A', '5']
def is_int(val):try:if int(val):return Trueexcept ValueError:return False
ivals = list(filter(is_int, values))
print(ivals)
output:

['1', '2', '-3', '4', '5']

1.3 class enumerate
class enumerate(object)
 |  enumerate(iterable[, start]) -> iterator for index, value of iterable
 |  
 |  Return an enumerate object.  iterable must be another object that supports
 |  iteration.  The enumerate object yields pairs containing a count (from
 |  start, which defaults to zero) and a value yielded by the iterable argument.
 |  enumerate is useful for obtaining an indexed list:
 |      (0, seq[0]), (1, seq[1]), (2, seq[2]), ...

S = 'abcdefghijk'
for (index,char) in enumerate(S):print(str(index).center(2), end = ' ')print(char)
output:

0  a
1  b
2  c
3  d
4  e
5  f
6  g
7  h
8  i
9  j
10 k
1.4 class zip(object)
 |  zip(iter1 [,iter2 [...]]) --> zip object
 |  
 |  Return a zip object whose .__next__() method returns a tuple where
 |  the i-th element comes from the i-th iterable argument.  The .__next__()
 |  method continues until the shortest iterable in the argument sequence
 |  is exhausted and then it raises StopIteration.
1.4.1
一般应用

#列表以及迭代器的压缩和解压缩
ta = [1,2,3]
tb = [9,8,7]
tc = ['a','b','c']
for (a,b,c) in zip(ta,tb,tc):print(a,b,c)# cluster
# zipped is a generator
zipped = zip(ta,tb)
print(zipped)
print(type(zipped))# decompose
na, nb = zip(*zipped)
print(na, nb)
output:

1 9 a
2 8 b
3 7 c
<zip object at 0x00000000023CDEC8>
<class 'zip'>
(1, 2, 3) (9, 8, 7)
1.4.2
列表相邻元素压缩器

zip(*[iter(s)]*n)应用
How does zip(*[iter(s)]*n) work in Python? 
解释1:
iter() is an iterator over a sequence. [x] * n produces a list containing n quantity of x, i.e. a list of length n, 
where each element is x. *arg unpacks a sequence into arguments for a function call. 
Therefore you're passing the same iterator 3 times to zip(), and it pulls an item from the iterator each time.
解释2:
iter(s) returns an iterator for s.
[iter(s)]*n makes a list of n times the same iterator for s.
So, when doing zip(*[iter(s)]*n), it extracts an item from all the three iterators from the list in order. 
Since all the iterators are the same object, it just groups the list in chunks of n.

example1:

s = [1,2,3,4,5,6,7,8,9]
n = 3zz = zip(*[iter(s)]*n) # returns [(1,2,3),(4,5,6),(7,8,9)]
for i in zz:print(i)
output:

(1, 2, 3)
(4, 5, 6)
(7, 8, 9)
example2:

x = iter([1,2,3,4,5,6,7,8,9])
for i in zip(x, x, x):print(i)
output:

(1, 2, 3)
(4, 5, 6)
(7, 8, 9)
1.4.3
针对上面的扩展

One word of advice for using zip like 1.4.2. It will truncate your list if it's length is not evenly divisible.
you could use something like this:
def n_split(iterable, n):num_extra = len(iterable) % nzipped = zip(*[iter(iterable)] * n)return list(zipped) if not num_extra else list(zipped) + n_split(iterable[-num_extra:],num_extra)for ints in n_split(range(1,12), 3):print(', '.join([str(i) for i in ints]))
output:

1, 2, 3
4, 5, 6
7, 8, 9
10, 11
注:
a.帖子上对n_split函数的return是return zipped if not num_extra else zipped + [iterable[-num_extra:], ],
但是这样会报错 TypeError: unsupported operand type(s) for +: 'zip' and 'list',所以最终修改成以上形式。
b.print(', '.join([str(i) for i in ints])) 中i必须是str形式,不然会报错
1.4.4 针对二维矩阵的行列互换
a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
b = map(list,zip(*a))
for i in b:print(i)
output:

[1, 4, 7]
[2, 5, 8]
[3, 6, 9]
1.4.5 反转字典
m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
print(dict(zip(m.values(), m.keys())))
output:

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1.5 class map
class map(object)
 |  map(func, *iterables) --> map object
 |  
 |  Make an iterator that computes the function using arguments from
 |  each of the iterables.  Stops when the shortest iterable is exhausted.
re = map((lambda x,y: x+y),[1,2,3],[6,7,9])
for i in re:print(i)
output:

7
9
12
1.6 class slice
class slice(object)
 |  slice(stop)
 |  slice(start, stop[, step])
 |  
 |  Create a slice object.  This is used for extended slicing (e.g. a[0:10:2]).
 |  
 |  Methods defined here:
 |  indices(...)
 |      S.indices(len) -> (start, stop, stride)
 |      
 |      Assuming a sequence of length len, calculate the start and stop
 |      indices, and the stride length of the extended slice described by
 |      S. Out of bounds indices are clipped in a manner consistent with the
 |      handling of normal slices.
 |  Data descriptors defined here:
 |  start
 |  step
 |  stop
#命名列表切割方式
a = [0, 1, 2, 3, 4, 5]
ind = slice(-3, None)
print(a[ind]) 
for i in ind.indices(6):print(i)  
print(a[3:6:1])
#由上脚本可知indices其实就是对slice的一种解释,其实把slice(-3, None)变成slice(3,6,1)结果也是一样的
output:

[3, 4, 5]
3
6
1
[3, 4, 5]

2. built-in functions:
2.1 built-in function iter 

iter(...)
    iter(iterable) -> iterator
    iter(callable, sentinel) -> iterator
    
    Get an iterator from an object.  In the first form, the argument must
    supply its own iterator, or be a sequence.
    In the second form, the callable is called until it returns the sentinel.
for i in iter(range(5)):print(i, end = ' ')
output:

0 1 2 3 4
2.2 built-in function min
min(...)
    min(iterable, *[, default=obj, key=func]) -> value
    min(arg1, arg2, *args, *[, key=func]) -> value
    
    With a single iterable argument, return its smallest item. The
    default keyword-only argument specifies an object to return if
    the provided iterable is empty.
    With two or more arguments, return the smallest argument.
# for the tow methods, we give the examples, as follows:
# Data reduction across fields of a data structure
portfolio = [{'name':'GOOG', 'shares': 50},{'name':'YHOO', 'shares': 75},{'name':'AOL', 'shares': 20},{'name':'SCOX', 'shares': 65}
]
print(min(p['shares'] for p in portfolio))
print(min(portfolio, key = lambda x: x['shares']))
output:

20
{'name': 'AOL', 'shares': 20}
2.3 Help on built-in function eval
eval(...)
    eval(source[, globals[, locals]]) -> value
    
    Evaluate the source in the context of globals and locals.
    The source may be a string representing a Python expression
    or a code object as returned by compile().
    The globals must be a dictionary and locals can be any mapping,
    defaulting to the current globals and locals.
    If only globals is given, locals defaults to it.
eval()函数十分强大,官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。so,结合math当成一个计算器很好用。
其他用法,可以把list,tuple,dict和string相互转化。见下例子:
>>> a = "[[1,2], [3,4], [5,6], [7,8], [9,0]]"
>>> print(type(eval(a)))
<class 'list'>
另一个例子:

# Compute area with console input
import math
# Prompt the user to enter a radius
radius = eval(input("Enter a value for radius:"))
# compute area
area = pow(radius, 2) * math.pi
# Display results
print("The area for the circle of radius", radius, "is", area)


这篇关于python之常用builtins的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/889982

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e