【三十六】【算法分析与设计】综合练习(3),39. 组合总和,784. 字母大小写全排列,526. 优美的排列

本文主要是介绍【三十六】【算法分析与设计】综合练习(3),39. 组合总和,784. 字母大小写全排列,526. 优美的排列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

39. 组合总和

对每一个位置进行枚举

枚举每一个数出现的次数

784. 字母大小写全排列

526. 优美的排列

结尾


39. 组合总和

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。

对于给定的输入,保证和为 target 的不同组合数少于 150 个。

示例 1:

 

输入:candidates = [2,3,6,7], target = 7输出:[[2,2,3],[7]] 解释: 2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。 7 也是一个候选, 7 = 7 。 仅有这两种组合。

示例 2:

 

输入: candidates = [2,3,5], target = 8 输出: [[2,2,2,2],[2,3,3],[3,5]]

示例 3:

 

输入: candidates = [2], target = 1 输出: []

提示:

  • 1 <= candidates.length <= 30

  • 2 <= candidates[i] <= 40

  • candidates 的所有元素 互不相同

  • 1 <= target <= 40

对每一个位置进行枚举

定义节点信息,定义path存储路径,定义sum存储当前节点的数字和。这两个变量表示一个节点位置。

定义pos表示孩子节点从哪个下表位置开始枚举。223和322是同一种情况,也就是当排序好了的序列只会出现一次。因此子树每一次都是从根节点的数字开始枚举。这样保证枚举的情况都是非递减,也就保证的不重复。

定义ret存储结果序列。

递归出口,如果sum==aim,将path加入ret结果序列中,return。

剪枝,如果sum>aim,不需要再枚举,直接返回return。

递归遍历整个树。

对于每一棵树根节点,遍历整个树相当于遍历该节点所有的子树。

 
class Solution {
public:vector<vector<int>> ret;vector<int> path;int sum = 0;int aim;vector<vector<int>> combinationSum(vector<int>& nums, int target) {aim = target;dfs(nums, 0);return ret;}void dfs(vector<int>& nums, int pos) {if (sum == aim) {ret.push_back(path);return;}if (sum > aim)return;for (int i = pos; i < nums.size(); i++) {path.push_back(nums[i]);sum = sum + nums[i];dfs(nums, i);path.pop_back();sum = sum - nums[i];}}
};

将全局遍历int类型写到递归函数作为非引用参数,此时不需要再手动回溯,提高效率。

但是不将vector类型写到递归函数作为非引用参数,因为每一次都需要开辟vector的空间,效率反而可能下降。

但是每次开辟int类型的空间,效率影响比较小。

 
class Solution {
public:vector<vector<int>> ret;vector<int> path;int aim;vector<vector<int>> combinationSum(vector<int>& nums, int target) {aim = target;dfs(nums, 0, 0);return ret;}void dfs(vector<int>& nums, int pos, int sum) {if (sum == aim) {ret.push_back(path);return;}if (sum > aim)return;for (int i = pos; i < nums.size(); i++) {path.push_back(nums[i]);dfs(nums, i, sum + nums[i]);path.pop_back();}}
};

枚举每一个数出现的次数

这种情况的剪枝操作多了一个,就是当pos孩子枚举的位置是nums.size(),此时不需要再继续下去了。

 
class Solution {
public:vector<vector<int>> ret;vector<int> path;int aim;vector<vector<int>> combinationSum(vector<int>& nums, int target) {aim = target;dfs(nums, 0, 0);return ret;}void dfs(vector<int>& nums, int pos, int sum) {if (sum == aim) {ret.push_back(path);return;}if (sum > aim || nums.size() == pos)return;for (int i = 0; i * nums[pos] <= aim; i++) {if (i)path.push_back(nums[pos]);dfs(nums, pos + 1, sum + i * nums[pos]);}for (int i = 1; i * nums[pos] <= aim; i++)path.pop_back();}
};

784. 字母大小写全排列

给定一个字符串 s ,通过将字符串 s 中的每个字母转变大小写,我们可以获得一个新的字符串。

返回 所有可能得到的字符串集合 。以 任意顺序 返回输出。

示例 1:

输入:s = "a1b2" 输出:["a1b2", "a1B2", "A1b2", "A1B2"]

示例 2:

输入: s = "3z4" 输出: ["3z4","3Z4"]

提示:

  • 1 <= s.length <= 12

  • s 由小写英文字母、大写英文字母和数字组成

定义path表示节点的序列。

定义pos表示下一个可能出现的字符,也就是对应孩子节点的选取。

递归函数遍历整个树。

递归出口,path.size()==s.size()。

 
class Solution {
public:vector<string> ret;string path;vector<string> letterCasePermutation(string s) {dfs(s, 0);return ret;}void dfs(string& s, int pos) {if (path.size() == s.size()) {ret.push_back(path);return;}// 变if (s[pos] > '9' || s[pos] < '0') {path.push_back(change(s[pos]));dfs(s, pos + 1);path.pop_back();}// 不变path.push_back(s[pos]);dfs(s, pos + 1);path.pop_back();}char change(char& ch) {if (ch <= 'z' && ch >= 'a')return ch - 32;elsereturn ch + 32;}
};

526. 优美的排列

假设有从 1 到 n 的 n 个整数。用这些整数构造一个数组 perm下标从 1 开始),只要满足下述条件 之一 ,该数组就是一个 优美的排列

  • perm[i] 能够被 i 整除

  • i 能够被 perm[i] 整除

给你一个整数 n ,返回可以构造的 优美排列 数量

示例 1:

输入:n = 2 输出:2 解释: 第 1 个优美的排列是 [1,2]: - perm[1] = 1 能被 i = 1 整除 - perm[2] = 2 能被 i = 2 整除 第 2 个优美的排列是 [2,1]: - perm[1] = 2 能被 i = 1 整除 - i = 2 能被 perm[2] = 1 整除

示例 2:

输入:n = 1 输出:1

提示:

  • 1 <= n <= 15

定义ret存储结果个数。

定义check存储当前节点之前已经使用的数字。

定义pos表示孩子节点枚举的位置。

每一个节点都需要维护这一节点的定义。也就是回溯。

 
class Solution {
public:int ret;vector<bool> check;int countArrangement(int n) {check.resize(16);dfs(1, n);return ret;}void dfs(int pos, int n) {if (pos == n + 1) {ret++;return;}for (int i = 1; i <= n; i++) {if (!check[i] && (i % pos == 0 || pos % i == 0)) {check[i] = true;dfs(pos + 1, n);check[i] = false;}}}
};

结尾

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

这篇关于【三十六】【算法分析与设计】综合练习(3),39. 组合总和,784. 字母大小写全排列,526. 优美的排列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/889559

相关文章

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499