针对图/网络性能评估函数【networkx库】

2024-04-09 02:36

本文主要是介绍针对图/网络性能评估函数【networkx库】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

networkx 是一个 Python 库,用于创建、操作和研究复杂网络的结构和动态过程,它提供了许多内置函数来评估图的各种性能。

常用函数介绍

1.平均最短路径长度 (average_shortest_path_length):计算图中所有节点对之间的平均最短路径长度。

import networkx as nxG = nx.Graph()
# 添加节点和边到图 G
# ...
average_shortest_path = nx.average_shortest_path_length(G)
print("Average shortest path length:", average_shortest_path)

2.度中心性 (degree_centrality):计算每个节点的度中心性,即节点的度与图中最大可能度的比例。

import networkx as nxG = nx.Graph()
# 添加节点和边到图 G
# ...
degree_centralities = nx.degree_centrality(G)
print("Degree centralities:", degree_centralities)

3.介数中心性 (betweenness_centrality):计算每个节点的介数中心性,衡量节点在图中的控制能力。

import networkx as nxG = nx.Graph()
# 添加节点和边到图 G
# ...
betweenness_centralities = nx.betweenness_centrality(G)
print("Betweenness centralities:", betweenness_centralities)

4.接近度中心性 (closeness_centrality):计算每个节点的接近度中心性,反映节点到达其他节点的平均距离。

import networkx as nxG = nx.Graph()
# 添加节点和边到图 G
# ...
closeness_centralities = nx.closeness_centrality(G)
print("Closeness centralities:", closeness_centralities)

5.连通分量 (connected_components):查找图中的连通分量,即图中由节点和边组成的连通子图。

import networkx as nxG = nx.Graph()
# 添加节点和边到图 G
# ...
connected_components = nx.connected_components(G)
print("Connected components:", list(connected_components))

6.图的直径 (diameter):计算图的直径,即图中最长最短路径的长度。

import networkx as nxG = nx.Graph()
# 添加节点和边到图 G
# ...
diameter = nx.diameter(G)
print("Diameter of the graph:", diameter)

7.平均聚类系数 (average_clustering):计算图中所有节点的平均聚类系数,表示图中节点之间的密集连接程度。

import networkx as nxG = nx.Graph()
# 添加节点和边到图 G
# ...
average_clustering_coefficient = nx.average_clustering(G)
print("Average clustering coefficient:", average_clustering_coefficient)

8.度分布 (degree_histogram):计算图中节点的度分布,即每个度值对应的节点数量。

import networkx as nx
import matplotlib.pyplot as pltG = nx.Graph()
# 添加节点和边到图 G
# ...
degree_histogram = nx.degree_histogram(G)
plt.bar(range(len(degree_histogram)), degree_histogram)
plt.xlabel("Degree")
plt.ylabel("Number of Nodes")
plt.title("Degree Distribution")
plt.show()

未完待续…

这篇关于针对图/网络性能评估函数【networkx库】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/886984

相关文章

JVisualVM之Java性能监控与调优利器详解

《JVisualVM之Java性能监控与调优利器详解》本文将详细介绍JVisualVM的使用方法,并结合实际案例展示如何利用它进行性能调优,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1. JVisualVM简介2. JVisualVM的安装与启动2.1 启动JVisualVM2

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

Linux网络配置之网桥和虚拟网络的配置指南

《Linux网络配置之网桥和虚拟网络的配置指南》这篇文章主要为大家详细介绍了Linux中配置网桥和虚拟网络的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、网桥的配置在linux系统中配置一个新的网桥主要涉及以下几个步骤:1.为yum仓库做准备,安装组件epel-re

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

MySQL 字符串截取函数及用法详解

《MySQL字符串截取函数及用法详解》在MySQL中,字符串截取是常见的操作,主要用于从字符串中提取特定部分,MySQL提供了多种函数来实现这一功能,包括LEFT()、RIGHT()、SUBST... 目录mysql 字符串截取函数详解RIGHT(str, length):从右侧截取指定长度的字符SUBST

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

Java的"伪泛型"变"真泛型"后对性能的影响

《Java的伪泛型变真泛型后对性能的影响》泛型擦除本质上就是擦除与泛型相关的一切信息,例如参数化类型、类型变量等,Javac还将在需要时进行类型检查及强制类型转换,甚至在必要时会合成桥方法,这篇文章主... 目录1、真假泛型2、性能影响泛型存在于Java源代码中,在编译为字节码文件之前都会进行泛型擦除(ty