Windows编译运行yolov9-bytetrack-tensorrt (C++)

2024-04-08 18:52

本文主要是介绍Windows编译运行yolov9-bytetrack-tensorrt (C++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Windows编译运行yolov9-bytetrack-tensorrt(C++)

  • 1 基础环境
  • 2 编译yolov9-bytetrack-tensorrt
    • (1)下载yolov9-bytetrack-tensorrt源码
    • (2)修改CMakeLists.txt
    • (3)CMake编译
  • 3 yolov9模型转换成TensorRT模型
    • (1)下载yolov9
    • (2)下载预训练模型
    • (3)将模型转换成onnx格式
    • (4)将onnx模型转换成tensorrt格式
  • 4 执行程序
  • 参考文章

1 基础环境

TensorRT 8.6
CUDA 11.8
Eigen 3.3
OpenCV 4.8(CUDA 11.8编译)
Visual Studio 2017 C++17编译器
CMake 3.21.4
Windows 10

2 编译yolov9-bytetrack-tensorrt

(1)下载yolov9-bytetrack-tensorrt源码

项目地址spacewalk01/yolov9-bytetrack-tensorrt

(2)修改CMakeLists.txt

设置opencv、Eigen和tensorrt路径。

# Find Eigen library
#find_package(Eigen3 3.3 REQUIRED)
include_directories(D:/Librarys/eigen-3.3.3)# Find and include OpenCV
set(OpenCV_DIR "D:/Program Files/opencv/opencv-4.8.0/install")
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})# Set TensorRT path if not set in environment variables
set(TENSORRT_DIR "D:/Librarys/TensorRT-8.6.1.6")

(3)CMake编译

使用VS2017编译器C++17,CUDA用v11.8。
在这里插入图片描述

注意:cuda默认会找环境变量中CUDA_PATH对应的版本,如果opencv是cuda编译的,该cuda版本要一致,避免出错。在这里插入图片描述

3 yolov9模型转换成TensorRT模型

(1)下载yolov9

创建conda环境,下载yolov9代码,并执行以下命令,详细参考前文yolov9训练自己的数据。

$ git clone https://github.com/WongKinYiu/yolov9.git
$ cd yolov9
$ conda create --name yolov9 python=3.8
$ pip install -r requirement.txt

(2)下载预训练模型

yolov9-c.pt

(3)将模型转换成onnx格式

a. 将TensorRT-YOLOv9目录下的 reparameterize.py放到yolov9目录下,在yolov9目录下执行以下命令,也可以直接官网下载转换好的模型yolov9-c-converted.pt。

python reparameterize.py yolov9-c.pt yolov9-c-converted.pt

b. 导出onnx模型,在yolov9目录下执行以下命令,生成yolov9-c-converted.onnx

python export.py --weights yolov9-c-converted.pt --include onnx

(4)将onnx模型转换成tensorrt格式

D:\Librarys\TensorRT-8.6.1.6\bin目录下执行以下命令:

trtexec.exe --onnx=yolov9-c-converted.onnx --explicitBatch --saveEngine=yolov9-c.engine --fp16

4 执行程序

显卡GTX1080,推理时间约50ms。
在这里插入图片描述

参考文章

spacewalk01/yolov9-bytetrack-tensorrt

这篇关于Windows编译运行yolov9-bytetrack-tensorrt (C++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/886276

相关文章

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Windows的CMD窗口如何查看并杀死nginx进程

《Windows的CMD窗口如何查看并杀死nginx进程》:本文主要介绍Windows的CMD窗口如何查看并杀死nginx进程问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows的CMD窗口查看并杀死nginx进程开启nginx查看nginx进程停止nginx服务

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

Java -jar命令如何运行外部依赖JAR包

《Java-jar命令如何运行外部依赖JAR包》在Java应用部署中,java-jar命令是启动可执行JAR包的标准方式,但当应用需要依赖外部JAR文件时,直接使用java-jar会面临类加载困... 目录引言:外部依赖JAR的必要性一、问题本质:类加载机制的限制1. Java -jar的默认行为2. 类加