遥感影像处理利器:PyTorch框架下CNN-Transformer,地物分类、目标检测、语义分割和点云分类

本文主要是介绍遥感影像处理利器:PyTorch框架下CNN-Transformer,地物分类、目标检测、语义分割和点云分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

专题一 深度卷积网络知识详解

专题二 PyTorch应用与实践(遥感图像场景分类)

专题三 卷积神经网络实践与目标检测

专题四 卷积神经网络的遥感影像目标检测任务案例【FasterRCNN】

专题五 Transformer与遥感影像目标检测

专题六 Transformer的遥感影像目标检测任务案例 【DETR】

专题七 深度学习与遥感影像分割任务

专题八 深度学习下的ASL(机载激光扫描仪)点云数据语义分类任务的基本知识

专题九 遥感影像问题探讨与深度学习优化技巧

更多应用


深度卷积网络采用“端对端”的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征(这种特征被称为“学习特征”),是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。同时,当前以Transformer等结构为基础模型的检测模型也发展迅速,在许多应用场景下甚至超过了原有的以CNN为主的模型。虽然以PyTorch为主体的深度学习平台为使用卷积神经网络也提供程序框架。但卷积神经网络涉及到的数学模型和计算机算法都十分复杂、运行及处理难度很大,PyTorch平台的掌握也并不容易。

使广大学者能理解卷积神经网络背后的数学模型和计算机算法,掌握利用PyTorch为基础的遥感影像和无人机影像的分类,目标检测,以及语义分割等应用。

专题一 深度卷积网络知识详解

1.深度学习在遥感图像识别中的范式和问题
2.深度学习的历史发展历程
3.机器学习,深度学习等任务的基本处理流程
4.卷积神经网络的基本原理
5.卷积运算的原理和理解
6.池化操作,全连接层,以及分类器的作用
7.BP反向传播算法的理解
8.CNN模型代码详解
9.特征图,卷积核可视化分析

专题二 PyTorch应用与实践(遥感图像场景分类)

1.PyTorch简介
2.动态计算图,静态计算图等机制
3.PyTorch的使用教程
4.PyTorch的学习案例
5.PyTorch的基本使用与API
6.PyTorch图像分类任务讲解
7.不同超参数,如初始化,学习率对结果的影响
8.使用PyTorch搭建神经网络并实现手写数字的分类
9.使用PyTorch修改模型并提升分类模型表现

专题三 卷积神经网络实践与目标检测

1.深度学习下的遥感影像目标检测基本知识
2.目标检测数据集的图像和标签表示方式
3.讲解目标检测模型的评估方案,包括正确率,精确率,召回率,mAP等
4.无人机影像的植物识别和统计
5.讲解two-stage(二阶)检测模型框架,RCNN, Fast RCNN, Faster RCNN等框
6.架的演变和差异
7.讲解 one-stage(一阶)检测模型框架,SDD ,Yolo等系列模型
8.现有检测模型「CNN系列」发展小结,包括OHEM、FCN、DCN等模型

专题四 卷积神经网络的遥感影像目标检测任务案例【FasterRCNN】

1.一份完整的Faster-RCNN 模型下实现遥感影像的目标检测
2.讲解数据集的制作过程,包括数据的存储和处理
3.数据集标签的制作
4.模型的搭建,组合和训练
5.检测任数据集在验证过程中的注意事项

专题五 Transformer与遥感影像目标检测

1.从卷积运算到自注意力运算 self-attention
2.pytorch实现的自监督模块
3.从Transformer到Vision Transformer (ViT)
4.ViT模型在遥感影像中的应用

专题六 Transformer的遥感影像目标检测任务案例 【DETR】

1.Transformer下的新目标检测范式,DETR
2.各类模型在遥感影像下的对比和调研
3.一份完整的DETR模型下实现遥感影像的目标检测
4.讲解针对检测任务的优化策略

专题七 深度学习与遥感影像分割任务

1.深度学习下的遥感影像分割任务的基本概念
2.讲解FCN,SegNet,U-net等模型的差异
3.分割模型的发展小结
4.遥感影像分割任务和图像分割的差异
5.在遥感影像分割任务中的注意事项案例 
讲解数据集的准备和处理
遥感影像划分成小图像的策略
模型的构建和训练方法
验证集的使用过程中的注意事项

专题八 深度学习下的ASL(机载激光扫描仪)点云数据语义分类任务的基本知识

1.PointNet与PointNet++等模型的基本讲解
2.点云数据的预处理和划分
3.点云数据的语义分割
4.点云数据的预测结果分析

专题九 遥感影像问题探讨与深度学习优化技巧

1.现有几个优秀模型结构的演变原理,包括AlexNet,VGG,googleNet,ResNet,DenseNet等模型
2.从模型演变中讲解实际训练模型的技巧
3.讲解针对数据的优化策略
4.讲解针对模型的优化策略
5.讲解针对训练过程的优化策略
6.讲解针对检测任务的优化策略
7.讲解针对分割任务的优化策略
8.提供一些常用的检测,分割数据集的标注工具


注:请提前自备电脑及安装所需软件


更多应用

①基于python深度学习遥感影像地物分类与目标识别、分割实践
②基于PyTorch深度学习无人机遥感影像目标检测、地物分类及语义分割实践
③遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
④PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化

基于PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化_基于深度学习的遥感影像目标提取-CSDN博客文章浏览阅读6.5k次,点赞4次,收藏62次。理解卷积神经网络背后的数学模型和计算机算法,掌握利用PyTorch为基础的遥感影像地物分类,遥感图像目标检测,以及遥感图像目标分割等应用。_基于深度学习的遥感影像目标提取https://blog.csdn.net/weixin_46747075/article/details/127731714?spm=1001.2014.3001.5501★点 击 关 注,获取海量教程和资源

这篇关于遥感影像处理利器:PyTorch框架下CNN-Transformer,地物分类、目标检测、语义分割和点云分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884800

相关文章

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐