遥感影像处理利器:PyTorch框架下CNN-Transformer,地物分类、目标检测、语义分割和点云分类

本文主要是介绍遥感影像处理利器:PyTorch框架下CNN-Transformer,地物分类、目标检测、语义分割和点云分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

专题一 深度卷积网络知识详解

专题二 PyTorch应用与实践(遥感图像场景分类)

专题三 卷积神经网络实践与目标检测

专题四 卷积神经网络的遥感影像目标检测任务案例【FasterRCNN】

专题五 Transformer与遥感影像目标检测

专题六 Transformer的遥感影像目标检测任务案例 【DETR】

专题七 深度学习与遥感影像分割任务

专题八 深度学习下的ASL(机载激光扫描仪)点云数据语义分类任务的基本知识

专题九 遥感影像问题探讨与深度学习优化技巧

更多应用


深度卷积网络采用“端对端”的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征(这种特征被称为“学习特征”),是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。同时,当前以Transformer等结构为基础模型的检测模型也发展迅速,在许多应用场景下甚至超过了原有的以CNN为主的模型。虽然以PyTorch为主体的深度学习平台为使用卷积神经网络也提供程序框架。但卷积神经网络涉及到的数学模型和计算机算法都十分复杂、运行及处理难度很大,PyTorch平台的掌握也并不容易。

使广大学者能理解卷积神经网络背后的数学模型和计算机算法,掌握利用PyTorch为基础的遥感影像和无人机影像的分类,目标检测,以及语义分割等应用。

专题一 深度卷积网络知识详解

1.深度学习在遥感图像识别中的范式和问题
2.深度学习的历史发展历程
3.机器学习,深度学习等任务的基本处理流程
4.卷积神经网络的基本原理
5.卷积运算的原理和理解
6.池化操作,全连接层,以及分类器的作用
7.BP反向传播算法的理解
8.CNN模型代码详解
9.特征图,卷积核可视化分析

专题二 PyTorch应用与实践(遥感图像场景分类)

1.PyTorch简介
2.动态计算图,静态计算图等机制
3.PyTorch的使用教程
4.PyTorch的学习案例
5.PyTorch的基本使用与API
6.PyTorch图像分类任务讲解
7.不同超参数,如初始化,学习率对结果的影响
8.使用PyTorch搭建神经网络并实现手写数字的分类
9.使用PyTorch修改模型并提升分类模型表现

专题三 卷积神经网络实践与目标检测

1.深度学习下的遥感影像目标检测基本知识
2.目标检测数据集的图像和标签表示方式
3.讲解目标检测模型的评估方案,包括正确率,精确率,召回率,mAP等
4.无人机影像的植物识别和统计
5.讲解two-stage(二阶)检测模型框架,RCNN, Fast RCNN, Faster RCNN等框
6.架的演变和差异
7.讲解 one-stage(一阶)检测模型框架,SDD ,Yolo等系列模型
8.现有检测模型「CNN系列」发展小结,包括OHEM、FCN、DCN等模型

专题四 卷积神经网络的遥感影像目标检测任务案例【FasterRCNN】

1.一份完整的Faster-RCNN 模型下实现遥感影像的目标检测
2.讲解数据集的制作过程,包括数据的存储和处理
3.数据集标签的制作
4.模型的搭建,组合和训练
5.检测任数据集在验证过程中的注意事项

专题五 Transformer与遥感影像目标检测

1.从卷积运算到自注意力运算 self-attention
2.pytorch实现的自监督模块
3.从Transformer到Vision Transformer (ViT)
4.ViT模型在遥感影像中的应用

专题六 Transformer的遥感影像目标检测任务案例 【DETR】

1.Transformer下的新目标检测范式,DETR
2.各类模型在遥感影像下的对比和调研
3.一份完整的DETR模型下实现遥感影像的目标检测
4.讲解针对检测任务的优化策略

专题七 深度学习与遥感影像分割任务

1.深度学习下的遥感影像分割任务的基本概念
2.讲解FCN,SegNet,U-net等模型的差异
3.分割模型的发展小结
4.遥感影像分割任务和图像分割的差异
5.在遥感影像分割任务中的注意事项案例 
讲解数据集的准备和处理
遥感影像划分成小图像的策略
模型的构建和训练方法
验证集的使用过程中的注意事项

专题八 深度学习下的ASL(机载激光扫描仪)点云数据语义分类任务的基本知识

1.PointNet与PointNet++等模型的基本讲解
2.点云数据的预处理和划分
3.点云数据的语义分割
4.点云数据的预测结果分析

专题九 遥感影像问题探讨与深度学习优化技巧

1.现有几个优秀模型结构的演变原理,包括AlexNet,VGG,googleNet,ResNet,DenseNet等模型
2.从模型演变中讲解实际训练模型的技巧
3.讲解针对数据的优化策略
4.讲解针对模型的优化策略
5.讲解针对训练过程的优化策略
6.讲解针对检测任务的优化策略
7.讲解针对分割任务的优化策略
8.提供一些常用的检测,分割数据集的标注工具


注:请提前自备电脑及安装所需软件


更多应用

①基于python深度学习遥感影像地物分类与目标识别、分割实践
②基于PyTorch深度学习无人机遥感影像目标检测、地物分类及语义分割实践
③遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
④PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化

基于PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化_基于深度学习的遥感影像目标提取-CSDN博客文章浏览阅读6.5k次,点赞4次,收藏62次。理解卷积神经网络背后的数学模型和计算机算法,掌握利用PyTorch为基础的遥感影像地物分类,遥感图像目标检测,以及遥感图像目标分割等应用。_基于深度学习的遥感影像目标提取https://blog.csdn.net/weixin_46747075/article/details/127731714?spm=1001.2014.3001.5501★点 击 关 注,获取海量教程和资源

这篇关于遥感影像处理利器:PyTorch框架下CNN-Transformer,地物分类、目标检测、语义分割和点云分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884800

相关文章

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

Redis高性能Key-Value存储与缓存利器常见解决方案

《Redis高性能Key-Value存储与缓存利器常见解决方案》Redis是高性能内存Key-Value存储系统,支持丰富数据类型与持久化方案(RDB/AOF),本文给大家介绍Redis高性能Key-... 目录Redis:高性能Key-Value存储与缓存利器什么是Redis?为什么选择Redis?Red