深度学习神经网络 MNIST手写数据辨识 1 前向传播和反向传播

本文主要是介绍深度学习神经网络 MNIST手写数据辨识 1 前向传播和反向传播,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先是前向传播的程序。为了更清晰我们分段讲解。

第一部分导入模块,并设置输入节点为28*28,输出节点为10(0到9共10个数字),第一层的节点为500(随便设的)

import tensorflow as tf
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500

然后是生成单个层次网络的结构,判断损失函数是否加入正则

#定义神经网络的输入,参数和输出,定义前向传播过程
def get_weight(shape,regularizer):w = tf.Variable(tf.random_normal(shape,stddev=0.1),dtype=tf.float32) #生成随机参数if regularizer != None:tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(regularizer)(w))return w

同时设置偏置项,偏置项不需要正则化。

def get_bias(shape):b = tf.Variable(tf.constant(0.01,shape=shape))return b

在总的前向传播网络中设置两层网络:

def forward(x,regularizer):w1 = get_weight([INPUT_NODE,LAYER1_NODE],regularizer)b1 = get_bias([LAYER1_NODE])y1 = tf.nn.relu(tf.matmul(x,w1)+b1)w2 = get_weight([LAYER1_NODE, OUTPUT_NODE], regularizer)b2 = get_bias([OUTPUT_NODE])y = tf.matmul(y1, w2) + b2return y

然后反向传播。这里实现了一种机制:每次训练前,先查看一下已有的模型,

首先仍然是加载模型和设置初始常量:正则系数为0.0001,不算很大。然后滑动平均值衰减设为0.99.

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward2
import osBATCH_SIZE = 200
LEARNING_RATE_BASE = 0.1
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001STEPS = 50000MOVING_AVERAGE_DECAY = 0.99MODEL_SAVE_PATH="./model/" #模型保存路径
MODEL_NAME="mnist_model" #模型保存文件名

然后是反向传播函数  def backward(mnist) :

输入数据和输出占位就先不说了,这里提一下损失函数:

采用最后输出为softmax的网络激活函数,并把损失函数定义为交叉熵

    #定义损失函数ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y,labels=tf.argmax(y_,1))cem = tf.reduce_mean(ce)loss = cem + tf.add_n(tf.get_collection('losses'))

学习率的设置方法和以前一样,然后定义反向传播方法,并设置和启用滑动平均值。

之后我们使用保存模型的函数:

    saver = tf.train.Saver()

在会话中我们先查看模型目录下有没有训练好的模型和参数,如果有,就恢复:

    with tf.Session() as sess:ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)if ckpt and ckpt.model_checkpoint_path:  # 先判断是否有模型saver.restore(sess, ckpt.model_checkpoint_path)  # 恢复模型到当前会话#可以观察到当前的会话已经包含当前的正确globalstep了currentstep = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]print(currentstep)

值得注意的是,我们之前在当前的模型里使用了滑动平均值,这里恢复的时候恢复了滑动平均后的数据,然后继续根据global_step来计算新的滑动平均值。而且,因为在模型中我们嵌入了global_step,所以恢复的时候,global_step也被恢复了。

然后开始训练。

        for i in range(STEPS):xs,ys = mnist.train.next_batch(BATCH_SIZE)_,loss_value,step = sess.run([train_op,loss,global_step],feed_dict={x:xs,y_:ys})if i % 1000 == 0:print("After " + str(i) + " steps, loss is: " + str(loss_value))saver.save(sess,os.path.join(MODEL_SAVE_PATH,MODEL_NAME),global_step=global_step)

设置自动执行的函数main() :

def main():mnist = input_data.read_data_sets("./data/",one_hot=True)backward(mnist)if __name__ == '__main__':main()

现在前向传播和后向传播都已经设置好了。大家多运行几次,就会发现每次都是从上一次训练好的模型中开始然后继续训练的。

这篇关于深度学习神经网络 MNIST手写数据辨识 1 前向传播和反向传播的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883656

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L