使用bcache加速hdd的原理及简单应用示例

2024-04-07 17:28

本文主要是介绍使用bcache加速hdd的原理及简单应用示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

bcache 是一种简单有效的方法,通过使用小容量高速磁盘(如 SSD )让大容量的低速磁盘(通常为 HDD )展现出与高速磁盘相近的性能。例如我们在 ceph 生产环境中,利用 bcache 将小容量的 SSD 盘作为一组大容量 HDD 的缓存,达到节省成本和提高性能的效果。

bcache内核模块仅在Linux 3.10及以上版本支持,因此使用Bcache,需要将内核升级到3.10及以上版本,并在内核配置项中打开Bcache模块。

bcache中的常用术语

  • backing device 后端存储盘,通常为低俗大容量磁盘,是实际保存数据的磁盘
  • cache device 缓存盘,通常指高速小容量磁盘
  • dirty cache 脏缓存,数据暂时只存在于缓存盘而未刷新到存储盘中
  • writeback 回写,数据写入时, 只要缓存盘写入成功, 写入请求就立即返回成功,缓存盘中的数据会定期刷写到后端存储盘中
  • writethrough 直写,数据写入时, 必须缓存盘和存储盘都写入成功, 写入请求才返回成功,因此该模式对于写入性能无提升,适用于读多写少的场景,可以保证数据的强一致性

原理简介

磁盘缓存的概念其实一直存在,比如操作系统中的内存。当从磁盘读取数据时,数据会被复制到 RAM 中。如果数据已经存在于 RAM 中,就会直接从 RAM 读取,而不是再次从磁盘读取。当数据写入磁盘时,它会先写入 RAM,然后过一会儿再写入磁盘。由于 RAM 是易失的,数据在 RAM 中停留的时间非常短。

bcache 与此类似,只是它有多种缓存操作模式。写入数据较快的模式是 writeback。它的工作方式与 RAM 相同,只不过 RAM 被 NVME SSD 设备所取代。数据可能在缓存中停留更长时间,甚至永久停留,因此存在一定的风险,例如当 SSD 损坏时,只存在于缓存中的数据会丢失,这很可能会导致整个文件系统无法访问。

bcache的简单创建

准备一块SSD(本文中为sdb,10GB)和一块HDD(本文中为sdc,100GB),在创建bcache前我们先来对两块盘的性能做简单测试:

# 在裸设备上创建文件系统并挂载
[root@ecs-91176055 /]#  mkfs.xfs /dev/sdb
meta-data=/dev/sdb               isize=512    agcount=4, agsize=655360 blks=                       sectsz=512   attr=2, projid32bit=1=                       crc=1        finobt=1, sparse=1, rmapbt=0=                       reflink=1    bigtime=0 inobtcount=0
data     =                       bsize=4096   blocks=2621440, imaxpct=25=                       sunit=0      swidth=0 blks
naming   =version 2              bsize=4096   ascii-ci=0, ftype=1
log      =internal log           bsize=4096   blocks=2560, version=2=                       sectsz=512   sunit=0 blks, lazy-count=1
realtime =none                   extsz=4096   blocks=0, rtextents=0
Discarding blocks...Done.[root@ecs-91176055 /]#  mkfs.xfs /dev/sdc
meta-data=/dev/sdc               isize=512    agcount=4, agsize=6553600 blks=                       sectsz=512   attr=2, projid32bit=1=                       crc=1        finobt=1, sparse=1, rmapbt=0=                       reflink=1    bigtime=0 inobtcount=0
data     =                       bsize=4096   blocks=26214400, imaxpct=25=                       sunit=0      swidth=0 blks
naming   =version 2              bsize=4096   ascii-ci=0, ftype=1
log      =internal log           bsize=4096   blocks=12800, version=2=                       sectsz=512   sunit=0 blks, lazy-count=1
realtime =none                   extsz=4096   blocks=0, rtextents=0
Discarding blocks...Done.[root@ecs-91176055 /]#  mkdir /ssd
[root@ecs-91176055 /]#  mkdir /hdd 
[root@ecs-91176055 /]#  mount /dev/sdb /ssd
[root@ecs-91176055 /]#  mount /dev/sdc /hdd# 进行简单的读写性能测试
# ssd写性能
[root@ecs-91176055 /]#  dd if=/dev/zero of=/ssd/testfile bs=1M count=5000 oflag=direct
5000+0 records in
5000+0 records out
5242880000 bytes (5.2 GB, 4.9 GiB) copied, 32.161 s, 163 MB/s# hdd写性能
[root@ecs-91176055 /]#  dd if=/dev/zero of=/hdd/testfile bs=1M count=5000 oflag=direct
5000+0 records in
5000+0 records out
5242880000 bytes (5.2 GB, 4.9 GiB) copied, 242.547 s, 21.6 MB/s# ssd读性能
[root@ecs-91176055 /]#  dd if=/ssd/testfile of=/dev/null bs=1M count=5000 iflag=direct
5000+0 records in
5000+0 records out
5242880000 bytes (5.2 GB, 4.9 GiB) copied, 32.1591 s, 163 MB/s# hdd读性能
[root@ecs-91176055 /]#  dd if=/hdd/testfile of=/dev/null bs=1M count=5000 iflag=direct
5000+0 records in
5000+0 records out
5242880000 bytes (5.2 GB, 4.9 GiB) copied, 148.681 s, 35.3 MB/s# 测试完成卸载卷
[root@ecs-91176055 /]#  umount /dev/sdb
[root@ecs-91176055 /]#  umount /dev/sdc

我们可以得到如下数据:

写速度读速度
SSD163MB/s163MB/s
HDD21.6MB/s35.3MB/s

接下来使用sdb作cache device,sdc作backing device

# 加载bcache内核模块
[root@ecs-91176055 ~]#  modprobe bcache
# 验证内核模块是否加载
[root@ecs-91176055 ~]#  lsmod | grep bcache
bcache                270336  0 
crc64                  16384  1 bcache# 安装bcache-tools
[root@ecs-91176055 ~]#  yum install bcache-tools -y# bcache无法使用分区或已有文件系统的磁盘,因此先使用wipefs擦除磁盘上的元数据信息
[root@ecs-91176055 ~]#  wipefs -a /dev/sdb
/dev/sdb: 4 bytes were erased at offset 0x00000000 (xfs): 58 46 53 42
[root@ecs-91176055 ~]#  wipefs -a /dev/sdc
/dev/sdc: 4 bytes were erased at offset 0x00000000 (xfs): 58 46 53 42# 创建backing device
[root@ecs-91176055 ~]#  bcache make -B /dev/sdc
Name                    /dev/sdc
Label
Type                    data
UUID:                   051db5a8-0c82-4c4c-a0a9-25da423b950c
Set UUID:               e41856dc-f3ab-4672-84cf-56507d10bf9a
version:                1
block_size_in_sectors:  1
data_offset_in_sectors: 16# 注册设备
[root@ecs-91176055 ~]#  bcache register /dev/sdc# 创建cache device
[root@ecs-91176055 ~]#  bcache make -C /dev/sdb
Name                    /dev/sdb
Label
Type                    cache
UUID:                   8ba34ba9-ca35-4c51-ba3d-cb08e6777047
Set UUID:               2f1f6fd1-6549-4b77-9a57-0fbe0c5669aa
version:                0
nbuckets:               20480
block_size_in_sectors:  1
bucket_size_in_sectors: 1024
nr_in_set:              1
nr_this_dev:            0
first_bucket:           1
/dev/sdb blkdiscard beginning...done# 注册设备
[root@ecs-91176055 ~]#  bcache register /dev/sdb# 将存储盘挂载到缓存盘
[root@ecs-91176055 ~]#  bcache attach /dev/sdb /dev/sdc# 设置写入策略为writeback
[root@ecs-91176055 ~]#  bcache set-cachemode /dev/sdc writeback# 查看bcache设备状态
[root@ecs-91176055 ~]#  bcache show
Name            Type            State                   Bname           AttachToDev
/dev/sdb        3 (cache)       active                  N/A             N/A
/dev/sdc        1 (data)        clean(running)          bcache0         /dev/sdb[root@ecs-91176055 /]#  mkdir /bcache 
# 挂载bcache设备
[root@ecs-91176055 /]#  mount /dev/bcache0 /bcache# bcache写性能
[root@ecs-91176055 /]#  dd if=/dev/zero of=/bcache/testfile bs=1M count=5000 oflag=direct
5000+0 records in
5000+0 records out
5242880000 bytes (5.2 GB, 4.9 GiB) copied, 65.822 s, 79 MB/s# bcache读性能
[root@ecs-91176055 /]#  dd if=/bcache/testfile of=/dev/null bs=1M count=5000 iflag=direct
5000+0 records in
5000+0 records out
5242880000 bytes (5.2 GB, 4.9 GiB) copied, 65 s, 80 MB/s

得到如下数据:

写速度读速度
SSD163MB/s163MB/s
HDD21.6MB/s35.3MB/s
bcache79MB/s80MB/s

总结

可以看到,理论上期望的 bcache 设备速度与缓存设备一样快是不可能实现的。平均而言,bcache 的速度明显较慢,但较单一HDD已经有较大提升。

以下命令提供了必要的优化,以从 bcache 设备获得更好的性能。

echo 0 > /sys/block/bcache0/bcache/cache/congested_write_threshold_us
echo 0 > /sys/block/bcache0/bcache/cache/congested_read_threshold_us
echo 600000000 > /sys/block/bcache0/bcache/sequential_cutoff
echo 40 > /sys/block/bcache0/bcache/writeback_percent

有关bcache的更多信息可以参考:https://www.kernel.org/doc/html/latest/admin-guide/bcache.html

这篇关于使用bcache加速hdd的原理及简单应用示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883216

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符