高精度端到端在线校准环视相机和LIDAR(精度0.2度内!无需训练数据)

本文主要是介绍高精度端到端在线校准环视相机和LIDAR(精度0.2度内!无需训练数据),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

高精度端到端在线校准环视相机和LIDAR(精度0.2度内!无需训练数据)

image

附赠自动驾驶学习资料和量产经验:链接

写在前面

在自动驾驶车辆的使用寿命内,传感器外参校准会因振动、温度和碰撞等环境因素而发生变化。即使是看似无害的 camera-lidar 外参校准值有一两度的误差,也可能给高级的 camera-lidar 感知功能引入灾难性的故障。

image

连续在线外部校准(COEC)在自动驾驶车辆的稳健性和安全性中发挥关键作用,在操作系统失效时能够识别故障,触发纠正行为,然后继续无损运行。如图所示,在没有人员车辆服务事件的情况下,重新标定传感器系统是面向车队可扩展的安全关键传感器融合系统的要求。

原文链接:精度0.2度内!无需训练数据,端到端在线校准环视相机和LIDAR

本文提出了一种轻量级无模式在线校准算法,用于使用深度特征互信息(MI)进行鱼眼相机和激光雷达的连续在线外参标定:

  • 使用深度特征互信息的端到端 COEC 流程

  • 用于标定评估的自我诊断置信度度量

  • 在 KITTI-360 数据集上进行的真实实验,使用原始未校正的鱼眼图像

方法

互信息测量了当了解一个变量后对另一个变量的不确定性减少的程度。在相机和激光雷达之间的外部标定的真值处,互信息的值应该是最大的。

当前有方法利用图像强度和激光雷达反射(一种强度特征)共享信息,并且可以用作相机-激光雷达外参标定的成本度量。然而,关于哪些场景共享强度特征信息没有理论和很少的一致性。图像的亮度(强度)与激光雷达测量的强度仅有松散的相关性。例如,一个深蓝色和明亮的白色路标都会返回高强度的激光雷达测量,但图像的强度会有很大的变化。这样的例子,在自动驾驶传感器数据中,显示了图像和激光雷达强度之间的不一致性是很常见的。

image

虚拟一个深度传感器以相机图像作为输入,并返回场景中每个像素的深度,使用单目深度估计网络实现深度估计。虚拟传感器和激光雷达之间的外参标定,也就是相机和激光雷达传感器之间的标定。如图所示,对于点云不使用强度信息,而是欧氏距离作为特征(见图2)。

如何判断优化收敛也至关重要,主要有三个简单的指标:

  • 互信息的值,在外参标定的真实值处被假定为最大值

  • 互信息对外参的一阶导数,在信息函数最大值时应为零

  • 互信息对外参的二阶导数,反映了信息函数的峰值,并应在外参标定的正确值处为最大值。

具体算法

COEC算法的输入是一组时间同步的图像点云对 (�=(�1,�1),(�2,�2),…,(��,��)),其中每对包括在二维相机光学坐标系 ( ��� ) 中记录的RGB图像 ( �� ) 和在LiDAR坐标系 ( �� ) 中记录的包含K个三维点的点云 ( �� )。

在第一步中,使用预训练的单目深度估计网络从每个RGB图像中提取深度图 ( �� )。第二步中,使用由初始值 ( Θ0=[��,��,��,��,��,��]� ) 参数化的刚性变换 ( ���∈�4×4),首先将每个点云转换为三维相机坐标系 (�� ),然后进一步投影到相机光学坐标系 ( ��� )。投影是基于双球相机模型和投影相机矩阵 ( �∈�3×4 ) 完成的。

对于每个深度图点云对 { (��,��)} ,我们得到了一组 ( �≤� ) 个像素,3D LiDAR点被投影到这些像素上。从像素中我们可以直接提取相应的图像深度特征 ( ��=��1,��2,…,��� ),通过从深度图中获取相应的值来实现。匹配的点云深度特征 ( ��=��1,��2,…,��� ) 则使用每个三维点到LiDAR坐标系原点的欧几里得距离来计算。通过归一化直方图表示,我们使用这两组特征近似它们的互信息(MI):

��(��,��,Θ)=�(�Θ�)+�(�Θ�)−�(�Θ�,�Θ�)

MI值直接取决于外部参数 ( Θ )。为了获得更稳健的估计,对整个输入集合的MI值进行平均。最后,使用平均MI作为目标函数,该函数由外参参数化,并将其最大化以获得正确的外参参数。优化使用Powell的BOBYQA算法,用于解决无导数的有界优化问题。

实验

精度表现

image

image

失效检测

展示了三个指标的数值:互信息、数值一阶导数和数值二阶导数。使用了50对图像-点云,这些图像-点云是在三分钟的驾驶片段中获取的,用于计算每个指标。在校准的真实值和1°、3°误差值处的指标数值在图4中展示。

image

image

image

总结一下

提出了一种利用相机单目深度估计和激光雷达深度特征之间的互信息进行连续在线外参校准的算法,其适用于汽车连续在线外参校准应用,未来的工作可以包括:

  • 探索单目深度估计和激光雷达互信息的统计特性

  • 了解与使用数据量的关系

  • 更全面的置信度指标和强大的分类器

  • 扩展到更多的相机和激光雷达模型

参考

[1] Continuous Online Extrinsic Calibration of Fisheye Camera and LiDAR

这篇关于高精度端到端在线校准环视相机和LIDAR(精度0.2度内!无需训练数据)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/882735

相关文章

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元