java使用Deep Java Library(djl)搭配TorchScript搭建图片分类

2024-04-07 12:12

本文主要是介绍java使用Deep Java Library(djl)搭配TorchScript搭建图片分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前置要求

1.1、下载TorchScript类型的模型,注意这里是TorchScript类型,有些模型在说明中会说明是否为该格式的文件。可以从huggingface下载,在huggingface注意未区分PyTorch和TorchScript,在模型下方的标签都标记的为PyTorch,需要看具体的描述是否说该模型为TorchScript。
1.2、pom文件引入依赖,注意和引擎相关的包需要搭配引用,例如ai.djl.pytorch的native和jni包与engine版本要对上。pom.xml引入包如下:

<properties><maven.compiler.source>11</maven.compiler.source><maven.compiler.target>11</maven.compiler.target><djl.version>0.27.0</djl.version></properties><dependencies><!-- https://mvnrepository.com/artifact/ai.djl/api --><dependency><groupId>ai.djl</groupId><artifactId>api</artifactId><version>${djl.version}</version></dependency><!-- https://mvnrepository.com/artifact/ai.djl/model-zoo --><dependency><groupId>ai.djl</groupId><artifactId>model-zoo</artifactId><version>${djl.version}</version></dependency><!-- https://mvnrepository.com/artifact/ai.djl.pytorch/pytorch-engine --><dependency><groupId>ai.djl.pytorch</groupId><artifactId>pytorch-engine</artifactId><version>${djl.version}</version></dependency><dependency><groupId>ai.djl</groupId><artifactId>basicdataset</artifactId><version>${djl.version}</version></dependency><dependency><groupId>ai.djl.pytorch</groupId><artifactId>pytorch-engine</artifactId><version>${djl.version}</version></dependency><dependency><groupId>ai.djl.pytorch</groupId><artifactId>pytorch-jni</artifactId><version>2.1.1-0.27.0</version></dependency><dependency><groupId>ai.djl.pytorch</groupId><artifactId>pytorch-native-cpu</artifactId><classifier>win-x86_64</classifier><version>2.1.1</version></dependency><dependency><groupId>ai.djl</groupId><artifactId>djl-zero</artifactId><version>${djl.version}</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-slf4j-impl</artifactId><version>2.21.0</version></dependency></dependencies>

二、java代码

将下载好的模型放到对应的位置,其中模型文件包含两个部分,一个是pt结尾的文件,当然结尾不一定是这个,可能是其他的,可以使用压缩文件打开这个模型文件看看是否包含了constants.pkl等文件,这个可以用作确认是否为TorchScript的一个标志。然后还需要一个synset.txt文件。

//这里也可以使用在线的模型
private static final URL MODEL_URL = NSFWUtil.class.getClassLoader().getResource("model/xxx.pt");public static void main(String[] args) throws MalformedModelException, IOException, ModelNotFoundException, TranslateException {getNSFW4JSON("image path");}/*** * @param imagePath 文件地址* @throws ModelNotFoundException * @throws MalformedModelException* @throws IOException* @throws TranslateException* @return nsfw的json*/public static Classifications  getNSFW4JSON(String imagePath) throws ModelNotFoundException, MalformedModelException, IOException, TranslateException {Image img = ImageFactory.getInstance().fromFile(Paths.get(imagePath));Translator<Image, Classifications> translator =ImageClassificationTranslator.builder().addTransform(new Resize(224, 224)).addTransform(new ToTensor()).optApplySoftmax(true).build();Criteria<Image, Classifications> criteria = Criteria.builder().setTypes(Image.class, Classifications.class).optModelUrls(MODEL_URL.toString()).optTranslator(translator).optEngine("PyTorch") // Use PyTorch engine.optProgress(new ProgressBar()).build();try (ZooModel<Image, Classifications> model = criteria.loadModel()){Predictor<Image, Classifications> predictor = model.newPredictor();return predictor.predict(img);}}/*** * @param in 输入流* @throws ModelNotFoundException * @throws MalformedModelException* @throws IOException* @throws TranslateException* @return nsfw的json*/public static Classifications  getNSFW4JSON(InputStream in) throws ModelNotFoundException, MalformedModelException, IOException, TranslateException {Image img = BufferedImageFactory.getInstance().fromInputStream(in);Translator<Image, Classifications> translator =ImageClassificationTranslator.builder().addTransform(new Resize(224, 224)).addTransform(new ToTensor()).optApplySoftmax(true).build();Criteria<Image, Classifications> criteria = Criteria.builder().setTypes(Image.class, Classifications.class).optModelUrls(MODEL_URL.toString()).optTranslator(translator).optEngine("PyTorch") // Use PyTorch engine.optProgress(new ProgressBar()).build();try (ZooModel<Image, Classifications> model = criteria.loadModel()){Predictor<Image, Classifications> predictor = model.newPredictor();return predictor.predict(img);}}

三、总结

3.1、代码中的ImageClassificationTranslator在其他很多时候是自己在定义具体的方法实现,这里我们是图片分类,所以我们用的是官方提供的Translator。
3.2、就目前来说框架帮我们实现了很多的代码,能写的代码不是很多,难点在于如何找到能用的模型,目前很多模型还是PyTorch类型的,无法在JAVA或者C++环境调用。
3.3、可以试一下的模型nsfw,记住下synset.txt

这篇关于java使用Deep Java Library(djl)搭配TorchScript搭建图片分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/882570

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B