矩阵快速幂 求斐波拉切数列的第n项 poj3070

2024-04-07 04:18

本文主要是介绍矩阵快速幂 求斐波拉切数列的第n项 poj3070,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Fibonacci
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7241   Accepted: 5131

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

Source

Stanford Local 2006


求斐波拉切数列的第n项数取余后的值  但是问题在于n给的特别大

这时就要用到矩阵快速幂来解决这个问题,直接矩阵快速幂模板,其实和快速幂差不多只是把数换为矩阵即可,在遇到像斐波拉契这种有递推关系时可以考虑一下矩阵快速幂

难点就在于如何构建矩阵,就像上面这个题的矩阵就特别好构造


代码:

#include <cstdio>
#include <iostream>


using namespace std;


const int MOD = 10000;


struct matrix
{
    int m[2][2];
}ans, base;


matrix multi(matrix a, matrix b)
{
    matrix tmp;
    for(int i = 0; i < 2; ++i)
    {
        for(int j = 0; j < 2; ++j)
        {
            tmp.m[i][j] = 0;
            for(int k = 0; k < 2; ++k)
                tmp.m[i][j] = (tmp.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD;
        }
    }
    return tmp;
}
int fast_mod(int n)  // 求矩阵 base 的  n 次幂 
{
    base.m[0][0] = base.m[0][1] = base.m[1][0] = 1;
    base.m[1][1] = 0;
    ans.m[0][0] = ans.m[1][1] = 1;  // ans 初始化为单位矩阵 
    ans.m[0][1] = ans.m[1][0] = 0;
    while(n)
    {
        if(n & 1)  //实现 ans *= t; 其中要先把 ans赋值给 tmp,然后用 ans = tmp * t 
        {
            ans = multi(ans, base);
        }
        base = multi(base, base);
        n >>= 1;
    }
    return ans.m[0][1];
}


int main()
{
    int n;
    while(scanf("%d", &n) && n != -1)
    {   
        printf("%d\n", fast_mod(n));
    }
    return 0;
}

这篇关于矩阵快速幂 求斐波拉切数列的第n项 poj3070的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/881619

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

一文教你Java如何快速构建项目骨架

《一文教你Java如何快速构建项目骨架》在Java项目开发过程中,构建项目骨架是一项繁琐但又基础重要的工作,Java领域有许多代码生成工具可以帮助我们快速完成这一任务,下面就跟随小编一起来了解下... 目录一、代码生成工具概述常用 Java 代码生成工具简介代码生成工具的优势二、使用 MyBATis Gen

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

SpringBoot快速搭建TCP服务端和客户端全过程

《SpringBoot快速搭建TCP服务端和客户端全过程》:本文主要介绍SpringBoot快速搭建TCP服务端和客户端全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录TCPServerTCPClient总结由于工作需要,研究了SpringBoot搭建TCP通信的过程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

快速修复一个Panic的Linux内核的技巧

《快速修复一个Panic的Linux内核的技巧》Linux系统中运行了不当的mkinitcpio操作导致内核文件不能正常工作,重启的时候,内核启动中止于Panic状态,该怎么解决这个问题呢?下面我们就... 感谢China编程(www.chinasem.cn)网友 鸢一雨音 的投稿写这篇文章是有原因的。为了配置完

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.