智慧牧场数据 7

2024-04-07 00:52
文章标签 数据 智慧 牧场

本文主要是介绍智慧牧场数据 7,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 体征数据采集

需求:获取奶牛记步信息

 

三轴加速度测量:加速度测量计反应的加速向量与当前的受力方向是相反,单位为g 

陀螺仪,是用来测量角速度的,单位为度每秒(deg/s) 2000deg/s 相当于1秒钟多少转 

1.1 原理图

IIC的地址最后一1位 

一键还原原理图d1、d2连接在核心板底座的con1和con2

同时,这两个引脚pb7、8可以直接使用IIC

1.2 驱动流程

陀螺仪测量范围是+-2000,加速度测量范围是+-2G,读取初始值是为了便于校准。每次读取到xyz要减去这个值

获取两个字节数据 

 

1.3 修改cubmx工程

I2C使能 pb7和pb8引脚配置

IIC标准工程 

 

 建立sensor文件夹,用于放置传感器相关文件

查看芯片手册

采样频率参考MPU-6050寄存器映射 

1.4 修改工程代码

使用i2c的阅读函数HAL_I2C_Mem_Read()、write

#include "mpu6050.h"#include "string.h"
#include "stdio.h"#include "i2c.h"
int16_t Accx,Accy,Accz;//**********************************//
//函数名称:  InitMpu6050 
//函数描述:   初始化MPU6050
//函数参数:   无
//返回值:     无
//*******************************//void InitMpu6050(void)
{uint8_t WriteCmd = 0;//解除休眠状态WriteCmd = 0x00;HAL_I2C_Mem_Write(&hi2c1, ADDRESS_Write, PWR_MGMT_1, I2C_MEMADD_SIZE_8BIT, &WriteCmd, 1, 0x10);//时钟速率0x06(1Khz)陀螺仪采样率0x07(125Hz)WriteCmd = 0x07;HAL_I2C_Mem_Write(&hi2c1, ADDRESS_Write, SMPLRT_DIV, I2C_MEMADD_SIZE_8BIT, &WriteCmd, 1, 0x10);      WriteCmd = 0x06;HAL_I2C_Mem_Write(&hi2c1, ADDRESS_Write, CONFIG, I2C_MEMADD_SIZE_8BIT, &WriteCmd, 1, 0x10);//不自检,2000deg/sWriteCmd = 0x18;HAL_I2C_Mem_Write(&hi2c1, ADDRESS_Write, GYRO_CONFIG, I2C_MEMADD_SIZE_8BIT, &WriteCmd, 1, 0x10);//(不自检,2G,5Hz)WriteCmd = 0x01;HAL_I2C_Mem_Write(&hi2c1, ADDRESS_Write, ACCEL_CONFIG, I2C_MEMADD_SIZE_8BIT, &WriteCmd, 1, 0x10);HAL_Delay(10);mpu6050_verify(&Accx, &Accy, &Accz); //读取第一次的值}//**********************************//
//函数名称:   mpu6050_verify
//函数描述:   MPU6050校验
//函数参数:   int16_t *x, int16_t *y, int16_t *z
//返回值:     无
//*******************************//void  mpu6050_verify(int16_t *x, int16_t *y, int16_t *z)
{uint8_t ReadBuffer[10] = {0};HAL_I2C_Mem_Read(&hi2c1, ADDRESS_Read, ACCEL_XOUT_L, I2C_MEMADD_SIZE_8BIT,&ReadBuffer[0],1, 0x10);HAL_I2C_Mem_Read(&hi2c1, ADDRESS_Read, ACCEL_XOUT_H, I2C_MEMADD_SIZE_8BIT,&ReadBuffer[1],1, 0x10);  *x = (ReadBuffer[1]<<8)+ReadBuffer[0] ;HAL_I2C_Mem_Read(&hi2c1, ADDRESS_Read, ACCEL_YOUT_L, I2C_MEMADD_SIZE_8BIT,&ReadBuffer[0],1, 0x10);HAL_I2C_Mem_Read(&hi2c1, ADDRESS_Read, ACCEL_YOUT_H, I2C_MEMADD_SIZE_8BIT,&ReadBuffer[1],1, 0x10);  *y = (ReadBuffer[1]<<8)+ReadBuffer[0] ;HAL_I2C_Mem_Read(&hi2c1, ADDRESS_Read, ACCEL_ZOUT_L, I2C_MEMADD_SIZE_8BIT,&ReadBuffer[0],1, 0x10);HAL_I2C_Mem_Read(&hi2c1, ADDRESS_Read, ACCEL_ZOUT_H, I2C_MEMADD_SIZE_8BIT,&ReadBuffer[1],1, 0x10);  *z = (ReadBuffer[1]<<8)+ReadBuffer[0] ;}//**********************************//
//函数名称:   mpu6050_ReadData
//函数描述:   MPU6060获取三轴数据
//函数参数:   int16_t *x, int16_t *y, int16_t *z
//返回值:     无
//*******************************//void  mpu6050_ReadData(float *Mx, float *My, float *Mz)
{int16_t x,y,z;uint8_t ReadBuffer[10] = {0};HAL_I2C_Mem_Read(&hi2c1, ADDRESS_Read, ACCEL_XOUT_L, I2C_MEMADD_SIZE_8BIT,&ReadBuffer[0],1, 0x10);HAL_I2C_Mem_Read(&hi2c1, ADDRESS_Read, ACCEL_XOUT_H, I2C_MEMADD_SIZE_8BIT,&ReadBuffer[1],1, 0x10);  x = (ReadBuffer[1]<<8)+ReadBuffer[0] ;x -= Accx;*Mx = ((float)x)/16384;HAL_I2C_Mem_Read(&hi2c1, ADDRESS_Read, ACCEL_YOUT_L, I2C_MEMADD_SIZE_8BIT,&ReadBuffer[0],1, 0x10);HAL_I2C_Mem_Read(&hi2c1, ADDRESS_Read, ACCEL_YOUT_H, I2C_MEMADD_SIZE_8BIT,&ReadBuffer[1],1, 0x10);  y = (ReadBuffer[1]<<8)+ReadBuffer[0] ;y -= Accy;*My = ((float)y)/16384;HAL_I2C_Mem_Read(&hi2c1, ADDRESS_Read, ACCEL_ZOUT_L, I2C_MEMADD_SIZE_8BIT,&ReadBuffer[0],1, 0x10);HAL_I2C_Mem_Read(&hi2c1, ADDRESS_Read, ACCEL_ZOUT_H, I2C_MEMADD_SIZE_8BIT,&ReadBuffer[1],1, 0x10);  z = (ReadBuffer[1]<<8)+ReadBuffer[0] ;z -= Accz;*Mz = ((float)z)/16384;}

三轴数据读取,减去初始值校准 

主程序中定义全局变量的xyz坐标

初始化I2C
初始化mpu6050 

 

while(1)之前又写了一个while(1) 

 

2 饲养环境采集

lora中集成温湿度传感器 

 

2.1 原理图 

D2连接到核心板con2  

D2就是pb8

 2.2 驱动分析 

 

获取数据。
如果继续拉高就是70us说明时1,否则是0.
读取5个字节,获取稳定数据、湿度数据和校验码 

2.3 修改工程代码

dh11.c

#include "stdint.h"
#include "tim.h"
#include "gpio.h"
#include "dht11.h"
#include "delay.h"//温湿度定义uint8_t ucharT_data_H=0,ucharT_data_L=0,ucharRH_data_H=0,ucharRH_data_L=0,ucharcheckdata=0;void DHT11_TEST(void)   //温湿传感启动
{uint8_t ucharT_data_H_temp,ucharT_data_L_temp,ucharRH_data_H_humidity,ucharRH_data_L_humidity,ucharcheckdata_temp;uint8_t ucharFLAG = 0,uchartemp=0;uint8_t ucharcomdata;uint8_t i;  {D2_OUT_GPIO_Init();                                  //根据时序图配置为输出模式,拉低等待18毫秒HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_RESET);HAL_Delay_ms(18);HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_SET);    //拉高,配置为输入模式,等待40usD2_IN_GPIO_Init();HAL_Delay_10us(4);         }if(!HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))              //如果响应信号是低电平 ,是否应答____{ucharFLAG=2;                                                //无符号char型,超时保护,最多255,再+到0,如果=1设置为超时判断while((!HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))&&ucharFLAG++);  //__--80us等待拉高ucharFLAG=2;while(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8)&&ucharFLAG++);     //--__80us等待拉低for(i=0;i<8;i++)                                             //读取数据{ucharFLAG=2; while((!HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))&&ucharFLAG++);     //判断是否拉高HAL_Delay_10us(3);                                             //如果拉高延时30us等待磐石是否拉低uchartemp=0;if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))uchartemp=1;          //如果还是高,代表1,否则代表0ucharFLAG=2;while(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8)&&ucharFLAG++);       //判断是否拉低,或者超时if(ucharFLAG==1)break;                                        //无符号char型,超时保护,最多255,再+到0,如果=1设置为超时判断ucharcomdata<<=1;                                             //左移1位ucharcomdata|=uchartemp; }ucharRH_data_H_humidity = ucharcomdata;                      //赋值给湿度高8位for(i=0;i<8;i++)    {ucharFLAG=2; while((!HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))&&ucharFLAG++);HAL_Delay_10us(3);uchartemp=0;if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))uchartemp=1;ucharFLAG=2;while(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8)&&ucharFLAG++);   if(ucharFLAG==1)break;    ucharcomdata<<=1;ucharcomdata|=uchartemp; }ucharRH_data_L_humidity = ucharcomdata;                     //赋值给湿度低8位for(i=0;i<8;i++)    {ucharFLAG=2; while((!HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))&&ucharFLAG++);HAL_Delay_10us(3);uchartemp=0;if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))uchartemp=1;ucharFLAG=2;while((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))&&ucharFLAG++);   if(ucharFLAG==1)break;    ucharcomdata<<=1;ucharcomdata|=uchartemp; }ucharT_data_H_temp      = ucharcomdata;                   //赋值给温度高8位for(i=0;i<8;i++)    {ucharFLAG=2; while((!HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))&&ucharFLAG++);HAL_Delay_10us(3);uchartemp=0;if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))uchartemp=1;ucharFLAG=2;while((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))&&ucharFLAG++);   if(ucharFLAG==1)break;    ucharcomdata<<=1;ucharcomdata|=uchartemp; }ucharT_data_L_temp      = ucharcomdata;                 //赋值给温度低8位for(i=0;i<8;i++)    {ucharFLAG=2; while((!HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))&&ucharFLAG++);HAL_Delay_10us(3);uchartemp=0;if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))uchartemp=1;ucharFLAG=2;while((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8))&&ucharFLAG++);   if(ucharFLAG==1)break;    ucharcomdata<<=1;ucharcomdata|=uchartemp; }ucharcheckdata_temp     = ucharcomdata;                            //读取校验和
//            humiture=1; uchartemp=(ucharT_data_H_temp+ucharT_data_L_temp+ucharRH_data_H_humidity+ucharRH_data_L_humidity);if(uchartemp==ucharcheckdata_temp)                    //判断校验和是否和读取的数据相同{          ucharT_data_H  = ucharT_data_H_temp;          //进去赋值ucharT_data_L  = ucharT_data_L_temp;ucharRH_data_H = ucharRH_data_H_humidity;ucharRH_data_L = ucharRH_data_L_humidity;ucharcheckdata = ucharcheckdata_temp;                    } } else //没用成功读取,返回0                              {ucharT_data_H  = 0;ucharT_data_L  = 0;ucharRH_data_H = 0;ucharRH_data_L = 0; } HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);          //重新调用systick的config,因为用到的延时毫秒和微妙都是systick,用完后要恢复}

delay.c

#include "stm32f0xx_hal.h"
#include "delay.h"/*** @}*/
void HAL_Delay_10us(__IO uint32_t Delay)
{HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);uint32_t temp;uint8_t fac_us=60;	        SysTick->LOAD=Delay*fac_us; //时间加载	  		 SysTick->VAL=0x00;        //清空计数器SysTick->CTRL=0x01 ;      //开始倒数 	 do{temp=SysTick->CTRL;}while(temp&0x01&&!(temp&(1<<16)));//等待时间到达   SysTick->CTRL=0x00;       //关闭计数器SysTick->VAL =0X00;       //清空计数器	
}
/*** @}*/
void HAL_Delay_ms(__IO uint32_t Delay)
{HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);uint32_t temp;uint16_t fac_ms=6000;	        SysTick->LOAD=Delay*fac_ms; //时间加载	  		 SysTick->VAL=0x00;        //清空计数器SysTick->CTRL=0x01 ;      //开始倒数 	 do{temp=SysTick->CTRL;}while(temp&0x01&&!(temp&(1<<16)));//等待时间到达   SysTick->CTRL=0x00;       //关闭计数器SysTick->VAL =0X00;       //清空计数器	
}
/*** @}*/
void HAL_Delay_us(__IO uint32_t Delay)
{HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);uint32_t temp;uint8_t fac_us=6;	        SysTick->LOAD=Delay*fac_us; //时间加载	  		 SysTick->VAL=0x00;        //清空计数器SysTick->CTRL=0x01 ;      //开始倒数 	 do{temp=SysTick->CTRL;}while(temp&0x01&&!(temp&(1<<16)));//等待时间到达   SysTick->CTRL=0x00;       //关闭计数器SysTick->VAL =0X00;       //清空计数器	
}

 

 

 

3 饲养环境控制

通过5v  二次回路AC驱动380风扇。试验里面采用了5v微型风扇 

3.1 修改工程代码

gpio D1初始化

 

#include "gpio.h"
#include "fan.h"
#include <stdbool.h>static uint8_t FanStaus = false;//**********************************//
//函数名称:   FanOn
//函数描述:   开启风扇
//函数参数:   无
//返回值:     无
//*******************************//void FanOn(void)
{HAL_GPIO_WritePin( FAN_GPIO_PORT, FAN_PIN, FAN_ON );FanStaus = true;
}//**********************************//
//函数名称:   FanOff
//函数描述:   关闭风扇
//函数参数:   无
//返回值:     无
//*******************************//void FanOff(void)
{HAL_GPIO_WritePin( FAN_GPIO_PORT, FAN_PIN, FAN_OFF ); FanStaus = false;
}//**********************************//
//函数名称:   FanReadStaus
//函数描述:   读取风扇状态
//函数参数:   无
//返回值:     无
//*******************************//uint8_t FanReadStaus( void )
{return FanStaus;
}

 主程序

 

SLCD_SHOW 

 

4 项目集成开发

定时采集上传数据

修改RTC文件

因为IIC,重新使用了cubmx,把IIC初始化更改了,要重新恢复
修改数据处理任务
       传感器定时上传函数

把之前rtc文件复制过来 

 

上传节点传感器函数,可以通过main函数查找,因为开发了3个设备的传感器,要进行区分。之前放在main函数的while1中
根据协议文件,修改数据包 

修改上传代码

//**********************************//
//函数名称:   SendSensorDataUP
//函数描述:   上传节点传感器数据
//函数参数:   无
//返回值:     无
//*******************************//void SendSensorDataUP(void)
{printf("SendSensorDataUP\n");//传感器类型6050
#if defined(MPU6050)mpu6050_ReadData(&Mx,&My,&Mz);printf("Mx = %.3f\n",Mx);printf("My = %3f\n",My);printf("Mz = %3f\n",Mz);DataPacke_t.netmsgHead = 'N';DataPacke_t.netPanid[0] = HI_UINT16(PAN_ID);DataPacke_t.netPanid[1] = LO_UINT16(PAN_ID);DataPacke_t.msgHead = 0x21;DataPacke_t.dataLength = 0x08;    //不含包头DataPacke_t.dataType = 0x00;DataPacke_t.deviceAddr[0] = HI_UINT16(ADDR);DataPacke_t.deviceAddr[1] = LO_UINT16(ADDR);DataPacke_t.sensorType  = 0x3;DataPacke_t.buff[0]  = int8_t(Mx*10)   //-127 128DataPacke_t.buff[1]  = int8_t(My*10)DataPacke_t.buff[2]  = int8_t(Mz*10)//校验码DataPacke_t.crcCheck = crc8((uint8_t *)&DataPacke_t,DataPacke_t.dataLength + 4);//发送数据包Radio->SetTxPacket((uint8_t *)&DataPacke_t, DataPacke_t.dataLength + 5);//传感器类型dht11
#if defined(DHT11)DHT11_TEST();printf("TEMP = %d\n",ucharT_data_H);printf("HUM = %d\n",ucharRH_data_H);DataPacke_t.netmsgHead = 'N';DataPacke_t.netPanid[0] = HI_UINT16(PAN_ID);DataPacke_t.netPanid[1] = LO_UINT16(PAN_ID);DataPacke_t.msgHead = 0x21;DataPacke_t.dataLength = 0x07;    //不含包头DataPacke_t.dataType = 0x00;DataPacke_t.deviceAddr[0] = HI_UINT16(ADDR);DataPacke_t.deviceAddr[1] = LO_UINT16(ADDR);DataPacke_t.sensorType  = 0x1;DataPacke_t.buff[0]  = int8_t(ucharT_data_H)   //-127 128DataPacke_t.buff[1]  = int8_t(ucharRH_data_H)//校验码DataPacke_t.crcCheck = crc8((uint8_t *)&DataPacke_t,DataPacke_t.dataLength + 4);//发送数据包Radio->SetTxPacket((uint8_t *)&DataPacke_t, DataPacke_t.dataLength + 5);//传感器类型FAN
#if defined(FAN)FanStaus = FanReadStaus();DataPacke_t.netmsgHead = 'N';DataPacke_t.netPanid[0] = HI_UINT16(PAN_ID);DataPacke_t.netPanid[1] = LO_UINT16(PAN_ID);DataPacke_t.msgHead = 0x21;DataPacke_t.dataLength = 0x06;    //不含包头DataPacke_t.dataType = 0x01;DataPacke_t.deviceAddr[0] = HI_UINT16(ADDR);DataPacke_t.deviceAddr[1] = LO_UINT16(ADDR);DataPacke_t.sensorType  = 0x3;DataPacke_t.buff[0]  = int8_t(FanStaus)   //校验码DataPacke_t.crcCheck = crc8((uint8_t *)&DataPacke_t,DataPacke_t.dataLength + 4);//发送数据包Radio->SetTxPacket((uint8_t *)&DataPacke_t, DataPacke_t.dataLength + 5);#endif   }

 修改解析代码

//**********************************//
//
//函数名称:   SlaveProtocolAnalysis
//
//函数描述:   从机协议解析
//
//函数参数:   uint8_t *buff,uint8_t len
//
//返回值:     uint8_t
//
//*******************************//uint8_t SlaveProtocolAnalysis(uint8_t *buff,uint8_t len)
{uint8_t Crc8Data;printf("SlaveProtocolAnalysis\n");for (int i = 0; i < len; i++){printf("0x%x  ",buff[i]);}printf("\n");if (buff[0] == NETDATA){if (buff[1] == HI_UINT16(PAN_ID) && buff[2] == LO_UINT16(PAN_ID)){Crc8Data = crc8(&buff[0], len - 1);if (Crc8Data != buff[len - 1]){memset(buff, 0, len);return 0;}if (buff[3] == 0x21){printf("Slave_NETDATA\n");if( buff[5] == 0x01){if(buff[6] == HI_UINT16(ADDR) && buff[7] == LO_UINT16(ADDR)){if(buff[8] == 0x03){
#if defined(FAN)if(buff[9] == true){FanON();}else{FanOff();}
#endif  }}}}return 0;}}else if((buff[0] == 0x3C) && (buff[2] == 'A')){if (DataCrcVerify(buff, len) == 0){return 0;}if (buff[3] == HI_UINT16(PAN_ID) && buff[4] == LO_UINT16(PAN_ID)){if (buff[5] == jionPacke_t.deviceAddr[0] && buff[6] == jionPacke_t.deviceAddr[1]){slaveNativeInfo_t.deviceId = buff[7];printf("Slave_ACK\n");return 0xFF;}}}else if((buff[0] == 0x3C) && (buff[2] == 'T')){if (DataCrcVerify(buff, len) == 0){return 0;}if (buff[3] == HI_UINT16(PAN_ID) && buff[4] == LO_UINT16(PAN_ID)){uint32_t alarmTime = 0;startUpTimeHours = buff[5];startUpTimeMinute = buff[6];startUpTimeSeconds = buff[7];startUpTimeSubSeconds = buff[8] <<8 | buff[9];printf("Slave_CLOCK\n");printf("H:%d,M:%d,S:%d,SUB:%d\n", startUpTimeHours, startUpTimeMinute, startUpTimeSeconds, startUpTimeSubSeconds);alarmTime = ((DataUpTimeHours * 60 + DataUpTimeMinute) * 60 + DataUpTimeSeconds) * 1000 + (DataUpTimeSubSeconds / 2) + DataUpTime;GetTimeHMS(alarmTime, &DataUpTimeHours, &DataUpTimeMinute, &DataUpTimeSeconds, &DataUpTimeSubSeconds);printf("DataUpTime->H:%d,M:%d,S:%d,SUB:%d\n", DataUpTimeHours, DataUpTimeMinute, DataUpTimeSeconds, DataUpTimeSubSeconds);//使能RTCMX_RTC_Init();return 0xFF;}}return 1;
}

CRC借用工具

这篇关于智慧牧场数据 7的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/881264

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语