GEE数据集——澳大利亚1987—2022年30米分辨率地表水数据集

2024-04-06 23:52

本文主要是介绍GEE数据集——澳大利亚1987—2022年30米分辨率地表水数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  简介

澳大利亚数字地球(DEA)水观测使用一种算法将大地遥感卫星图像中的每个像素分为 "湿"、"干 "或 "无效"。水观测统计提供的信息包括每年大地遥感卫星能够清晰观测到某一区域的次数、这些观测结果中潮湿的次数,以及这意味着在地貌中观测到水的时间百分比。

将分类像素合并成涵盖每年的摘要,就能得到通常有水和很少有水的地方的信息。由于没有对该产品进行置信度过滤,它受到输入的水分类中出现的误分类噪音的影响,很难单独进行解释。

如需了解更多信息:

https://cmi.ga.gov.au/data-products/dea/686/dea-water-observations-statistics-landsat

该产品是澳大利亚数字地球计划的一部分

Digital Earth Australia Home | Digital Earth Australia | Geoscience Australia

数据介绍 

Catalog Owner

Geoscience Australia

Dataset Availability

1987-01-01T00:00:00Z–2022-01-01T00:00:00Z

Dataset Provider

Geoscience Australia NGIS

Contact

https://www.ga.gov.au/contact-us

Earth Engine Snippet

ee.ImageCollection("projects/geoscience-aus-cat/assets/ga_ls_wo_fq_cyear_3")

DEA Water Observations Statistics (Landsat)

Geoscience Australia Landsat Water Observation Statistics Collection 3

Version:

3.1.6 (Latest)

Product types:

Derivative, Raster

Time span:

1986 – Present

Update frequency:

Periodically

Product IDs:

ga_ls_wo_fq_apr_oct_3, ga_ls_wo_fq_nov_mar_3, ga_ls_wo_fq_cyear_3, ga_ls_wo_fq_myear_3

Resolution
25 meters

波段

NameMinMaxWavelengthDescription
blue0*10000*0.450-0.520 μm

Band blue surface reflectance geometric median.

green0*10000*0.520-0.600 μm

Band green surface reflectance geometric median.

red0*10000*0.630-0.690 μm

Band red surface reflectance geometric median.

near_infrared0*10000*0.760-0.900 μm

Band near infrared surface reflectance geometric median.

shortwave_infrared_10*10000*1.550-1.750 μm

Band shortwave infrared 1 surface reflectance geometric median.

shortwave_infrared_20*10000*2.080-2.350 μm

Band shortwave infrared 2 surface reflectance geometric median.

Euclidean_distance_median_absolute_deviation0*10000*

The Median Absolute Deviation using Euclidean distance (EMAD). EMAD is more sensitive to changes in target brightness.

spectral_distance_median_absolute_deviation0*10000*

The Median Absolute Deviation using Cosine (spectral) distance (SMAD). SMAD is more sensitive to change in target spectral response.

Bray_Curtis_dissimilarity_median_absolute_deviation0*10000*

The Median Absolute Deviation using Bray Curtis dissimilarity (BCMAD). BCMAD is more sensitive to the distribution of the observation values through time.

count0*400*

The number of the available pixels used for calculation per calendar year.

* estimated min or max value 

代码

var water_obs = ee.ImageCollection('projects/geoscience-aus-cat/assets/ga_ls_wo_fq_cyear_3');var gray = 150;
var background = ee.Image.rgb(gray, gray, gray).visualize({ min: 0, max: 255 });var visualization_frequency = {bands: ['frequency'],min: 0.0,max: 1.0,palette: ['ffffff', 'ffbbbb', '0000ff']
};var point = ee.Geometry.Point([113.651455, -26.024137]);var image = water_obs.filterBounds(point).filterDate('2010-01-01', '2011-01-01').first().visualize(visualization_frequency);Map.centerObject(image, 12);
var imageWithBackground = ee.ImageCollection([background, image]).mosaic();
Map.addLayer(imageWithBackground, {}, 'Water Frequency ratio');

 引用

  • Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., Lymburner, L., McIntyre, A., Tan, P., Curnow, S., & Ip, A. (2016). Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sensing of Environment, 174, 341-352 https://cmi.ga.gov.au/data-products/dea/686/dea-water-observations-statistics-landsat

结果

 

网址推荐

0代码在线构建地图应用

Mapmost login

机器学习

https://www.cbedai.net/xg 

这篇关于GEE数据集——澳大利亚1987—2022年30米分辨率地表水数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/881163

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元