路径规划算法:Voronoi Planner讲解

2024-04-06 21:20

本文主要是介绍路径规划算法:Voronoi Planner讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

路径规划算法:Voronoi Planner讲解

image

附赠自动驾驶学习资料和量产经验:链接

Voronoi Diagram(也称作Dirichlet tessellation)是由俄国数学家Georgy Voronoy提出的一种空间分割算法。它通过一系列的种子节点(Seed Points)将空间切分为许多子区域,每个子区域被称为一个Cell,每个Cell中的所有点到当前Cell中的种子节点(Seed Points)的距离小于到其它所有种子节点(Seed Points)的距离。

image

图片来源: https://www.youtube.com/watch?v=7eCrHAv6sYY

image

每个Cell中包含的都是距离当前Cell距离最近的所有点,因此Cell的边界就是距离种子点(Seed Points)最远的点的集合。利用Voronoi Diagram的这个特性,将障碍物的边界当做种子点(Seed Points),那么Cell的边界就是远离所有障碍物的可行驶路径。

Voronoi Planner最大化的利用了障碍物之间的空隙,确保生成的路径是最大程度远离所有障碍物的安全行驶路径。

image

图片来源:https://natanaso.github.io/ece276b2018/ref/ECE276B_5_ConfigurationSpace.pdf

1、使用Voronoi Diagram进行路径规划

下图是一所大学校园的地图,图中包含各种多变形的障碍物,我们可以使用使用Voronoi Planner实现在地图中查找一条安全路径,最大程度的避开障碍物。

image

the northern half of Columbia's Morningside Campus.图片来源:https://www.cs.columbia.edu/~pblaer/projects/path_planner/

为了实现Voronoi路径规划,首先用一系列的离散点集序列组成的小线段模拟逼近多边形障碍物的每个边。

image

The points that approximate thepolygonal obstacles. 图片来源:https://www.cs.columbia.edu/~pblaer/projects/path_planner/

然后使用这些近似的离散点作为输入,使用Voronoi构造算法构造Voronoi Diagram。

image

The points that approximate thepolygonal obstacles. 图片来源:https://www.cs.columbia.edu/~pblaer/projects/path_planner/

Voronoi diagram构造完成之后,消除顶点包含在障碍物或者与障碍物相交的Voronoi Edge,剩下的Voronoi Edge就构成了避开所有障碍物的可行驶路径集合。

image

The points that approximate thepolygonal obstacles. 图片来源:https://www.cs.columbia.edu/~pblaer/projects/path_planner/

最后,将Voronoi Edge转化为Grahp结构,将机器人的起点位置和终点位置关联到最近的Voronoi Edge,然后通过图搜索算法(Dijkstra等)就可以生成一条从起点到终点的安全行驶路线。

2、Voronio Planner VS Sample Planner

从下图的对比可以看出,Voronoi Planner规划的路径的特点是尽量的远离障碍物。

image

图片来源:Local and Global Motion Planning for Unmanned Surface Vehicle

image

图片来源:Local and Global Motion Planning for Unmanned Surface Vehicle

3、梯度下降的路径平滑算法

同基于采样的运动规划生成的曲线一样,Voronio Planner生成的曲线都是不平滑的折线,所以需要对路径进行平滑操作,平滑的方法也比较多,今天先介绍其中一种。

3.1 问题定义

如下图所示,s表示运动规划的起点,e表示运动规划终点,斜线填充的网格表示障碍物位置,蓝色的线为运动规划算法(RRT、Voronoi etc.)规划出的路线,曲折不平;红色为平滑后的运动曲线,对车辆的实际行驶比较友好。

image

image

image

3.2 算法实现

上图代码一个5x5的网格地图,红色圆圈代表一条从(0,0)到(4,4)的规划路线,下Python面代码演示了如何由这条路线生成一条平滑路线。

image

from math import *path = [[0, 0],[0, 1],[0, 2],[1, 2],[2, 2],[3, 2],[4, 2],[4, 3],[4, 4]]def smooth(path, weight_data = 0.5, weight_smooth = 0.1, tolerance = 0.000001):# Make a deep copy of path into newpathnewpath = [[0 for col in range(len(path[0]))] for row in range(len(path))]for i in range(len(path)):for j in range(len(path[0])):newpath[i][j] = path[i][j]change = tolerancewhile change >= tolerance:change = 0for i in range(1,len(path) - 1):for j in range(len(path[0])):d1 = weight_data * (path[i][j] - newpath[i][j])d2 = weight_smooth * (newpath[i-1][j] + newpath[i+1][j] - 2 * newpath[i][j])change += abs(d1 + d2)newpath[i][j] += d1 + d2return newpath newpath = smooth(path)for i in range(len(path)):print('['+ ', '.join('%.3f'%x for x in path[i]) +']> ['+', '.join('%.3f'%x for x in newpath[i]) +']')

平滑后的路径输出结果如下:

[0.000, 0.000]> [0.000, 0.000]
[0.000, 1.000]> [0.021, 0.979]
[0.000, 2.000]> [0.149, 1.851]
[1.000, 2.000]> [1.021, 1.979]
[2.000, 2.000]> [2.000, 2.000]
[3.000, 2.000]> [2.979, 2.021]
[4.000, 2.000]> [3.851, 2.149]
[4.000, 3.000]> [3.979, 3.021]
[4.000, 4.000]> [4.000, 4.000]

平滑算法的实际应用效果如下:

image

图片来源:Local and Global Motion Planning for Unmanned Surface Vehicle

相关代码

1、Boost Voronio Diagram。(https://www.boost.org/doc/libs/1_60_0/libs/polygon/doc/voronoi_diagram.htm)

2、Scipy Spatial Voronoi(https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.spatial.Voronoi.html)

3、Voronoi Planner的代码实现可以参考:

https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/VoronoiRoadMap/voronoi_road_map.py

参考链接

1、Boost Voronio Diagram。(https://www.boost.org/doc/libs/1_60_0/libs/polygon/doc/voronoi_diagram.htm)

2、Robot Path Planning Using Generalized Voronoi Diagrams(https://www.cs.columbia.edu/~pblaer/projects/path_planner/)

3、Local and Global Motion Planning for Unmanned Surface Vehicle,Roman Fedorenko, Boris Gurenko

这篇关于路径规划算法:Voronoi Planner讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880859

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

MySQL连表查询之笛卡尔积查询的详细过程讲解

《MySQL连表查询之笛卡尔积查询的详细过程讲解》在使用MySQL或任何关系型数据库进行多表查询时,如果连接条件设置不当,就可能发生所谓的笛卡尔积现象,:本文主要介绍MySQL连表查询之笛卡尔积查... 目录一、笛卡尔积的数学本质二、mysql中的实现机制1. 显式语法2. 隐式语法3. 执行原理(以Nes

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

RabbitMQ消费端单线程与多线程案例讲解

《RabbitMQ消费端单线程与多线程案例讲解》文章解析RabbitMQ消费端单线程与多线程处理机制,说明concurrency控制消费者数量,max-concurrency控制最大线程数,prefe... 目录 一、基础概念详细解释:举个例子:✅ 单消费者 + 单线程消费❌ 单消费者 + 多线程消费❌ 多

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.