Spark SQL用UDF实现按列特征重分区 repatition

2024-04-06 18:58

本文主要是介绍Spark SQL用UDF实现按列特征重分区 repatition,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转:https://cloud.tencent.com/developer/article/1371921

解决问题之前,要先了解一下Spark 原理,要想进行相同数据归类到相同分区,肯定要有产生shuffle步骤。

比如,F到G这个shuffle过程,那么如何决定数据到哪个分区去的呢?这就有一个分区器的概念,默认是hash分区器。

假如,我们能在分区这个地方着手的话肯定能实现我们的目标。

那么,在没有看Spark Dataset的接口之前,浪尖也不知道Spark Dataset有没有给我门提供这种类型的API,抱着试一试的心态,可以去Dataset类看一下,这个时候会发现有一个函数叫做repartition。

/*** Returns a new Dataset partitioned by the given partitioning expressions, using* `spark.sql.shuffle.partitions` as number of partitions.* The resulting Dataset is hash partitioned.** This is the same operation as "DISTRIBUTE BY" in SQL (Hive QL).** @group typedrel* @since 2.0.0*/@scala.annotation.varargsdef repartition(partitionExprs: Column*): Dataset[T] = {repartition(sparkSession.sessionState.conf.numShufflePartitions, partitionExprs: _*)}

可以传入列表达式来进行重新分区,产生的新的Dataset的分区数是由参数spark.sql.shuffle.partitions决定,那么是不是可以满足我们的需求呢?

明显,直接用是不行的,可以间接使用UDF来实现该功能。

方式一-简单重分区

首先,实现一个UDF截取列值共同前缀,当然根据业务需求来写该udf

val substring = udf{(str: String) => {str.substring(0,str.length-1)}}

注册UDF

spark.udf.register("substring",substring)

创建Dataset

val sales = spark.createDataFrame(Seq(("Warsaw1", 2016, 100),("Warsaw2", 2017, 200),("Warsaw3", 2016, 100),("Warsaw4", 2017, 200),("Beijing1", 2017, 200),("Beijing2", 2017, 200),("Warsaw4", 2017, 200),("Boston1", 2015, 50),("Boston2", 2016, 150))).toDF("city", "year", "amount")

执行充分去操作

val res = sales.repartition(substring(col("city")))

打印分区ID及对应的输出结果

res.foreachPartition(partition=>{println("---------------------> Partition start ")println("partitionID is "+TaskContext.getPartitionId())partition.foreach(println)println("=====================> Partition stop ")})

浪尖这里spark.sql.shuffle.partitions设置的数值为10.

输出结果截图如下:

方式二-SQL实现

对于Dataset的repartition产生的shuffle是不需要进行聚合就可以产生shuffle使得按照字段值进行归类到某些分区。

SQL的实现要实现重分区要使用group by,然后udf跟上面一样,需要进行聚合操作。

完整代码如下:

val sales = spark.createDataFrame(Seq(("Warsaw1", 2016, 100),("Warsaw2", 2017, 200),("Warsaw3", 2016, 100),("Warsaw4", 2017, 200),("Beijing1", 2017, 200),("Beijing2", 2017, 200),("Warsaw4", 2017, 200),("Boston1", 2015, 50),("Boston2", 2016, 150))).toDF("city", "year", "amount")sales.registerTempTable("temp");val substring = udf{(str: String) => {str.substring(0,str.length-1)}}spark.udf.register("substring",substring)val res = spark.sql("select sum(amount) from temp group by substring(city)")
//res.foreachPartition(partition=>{println("---------------------> Partition start ")println("partitionID is "+TaskContext.getPartitionId())partition.foreach(println)println("=====================> Partition stop ")})

输出结果如下:

由上面的结果也可以看到task执行结束时间是无序的。

浪尖在这里主要是讲了Spark SQL 如何实现按照自己的需求对某列重分区。

那么,浪尖在这里就顺带问一下,如何用Spark Core实现该功能呢?

这篇关于Spark SQL用UDF实现按列特征重分区 repatition的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880586

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、