Spark SQL用UDF实现按列特征重分区 repatition

2024-04-06 18:58

本文主要是介绍Spark SQL用UDF实现按列特征重分区 repatition,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转:https://cloud.tencent.com/developer/article/1371921

解决问题之前,要先了解一下Spark 原理,要想进行相同数据归类到相同分区,肯定要有产生shuffle步骤。

比如,F到G这个shuffle过程,那么如何决定数据到哪个分区去的呢?这就有一个分区器的概念,默认是hash分区器。

假如,我们能在分区这个地方着手的话肯定能实现我们的目标。

那么,在没有看Spark Dataset的接口之前,浪尖也不知道Spark Dataset有没有给我门提供这种类型的API,抱着试一试的心态,可以去Dataset类看一下,这个时候会发现有一个函数叫做repartition。

/*** Returns a new Dataset partitioned by the given partitioning expressions, using* `spark.sql.shuffle.partitions` as number of partitions.* The resulting Dataset is hash partitioned.** This is the same operation as "DISTRIBUTE BY" in SQL (Hive QL).** @group typedrel* @since 2.0.0*/@scala.annotation.varargsdef repartition(partitionExprs: Column*): Dataset[T] = {repartition(sparkSession.sessionState.conf.numShufflePartitions, partitionExprs: _*)}

可以传入列表达式来进行重新分区,产生的新的Dataset的分区数是由参数spark.sql.shuffle.partitions决定,那么是不是可以满足我们的需求呢?

明显,直接用是不行的,可以间接使用UDF来实现该功能。

方式一-简单重分区

首先,实现一个UDF截取列值共同前缀,当然根据业务需求来写该udf

val substring = udf{(str: String) => {str.substring(0,str.length-1)}}

注册UDF

spark.udf.register("substring",substring)

创建Dataset

val sales = spark.createDataFrame(Seq(("Warsaw1", 2016, 100),("Warsaw2", 2017, 200),("Warsaw3", 2016, 100),("Warsaw4", 2017, 200),("Beijing1", 2017, 200),("Beijing2", 2017, 200),("Warsaw4", 2017, 200),("Boston1", 2015, 50),("Boston2", 2016, 150))).toDF("city", "year", "amount")

执行充分去操作

val res = sales.repartition(substring(col("city")))

打印分区ID及对应的输出结果

res.foreachPartition(partition=>{println("---------------------> Partition start ")println("partitionID is "+TaskContext.getPartitionId())partition.foreach(println)println("=====================> Partition stop ")})

浪尖这里spark.sql.shuffle.partitions设置的数值为10.

输出结果截图如下:

方式二-SQL实现

对于Dataset的repartition产生的shuffle是不需要进行聚合就可以产生shuffle使得按照字段值进行归类到某些分区。

SQL的实现要实现重分区要使用group by,然后udf跟上面一样,需要进行聚合操作。

完整代码如下:

val sales = spark.createDataFrame(Seq(("Warsaw1", 2016, 100),("Warsaw2", 2017, 200),("Warsaw3", 2016, 100),("Warsaw4", 2017, 200),("Beijing1", 2017, 200),("Beijing2", 2017, 200),("Warsaw4", 2017, 200),("Boston1", 2015, 50),("Boston2", 2016, 150))).toDF("city", "year", "amount")sales.registerTempTable("temp");val substring = udf{(str: String) => {str.substring(0,str.length-1)}}spark.udf.register("substring",substring)val res = spark.sql("select sum(amount) from temp group by substring(city)")
//res.foreachPartition(partition=>{println("---------------------> Partition start ")println("partitionID is "+TaskContext.getPartitionId())partition.foreach(println)println("=====================> Partition stop ")})

输出结果如下:

由上面的结果也可以看到task执行结束时间是无序的。

浪尖在这里主要是讲了Spark SQL 如何实现按照自己的需求对某列重分区。

那么,浪尖在这里就顺带问一下,如何用Spark Core实现该功能呢?

这篇关于Spark SQL用UDF实现按列特征重分区 repatition的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880586

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根