使用SVD将图像压缩四分之一(MATLAB)

2024-04-06 15:44

本文主要是介绍使用SVD将图像压缩四分之一(MATLAB),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SVD压缩前后数据量减少的原因在于,通过奇异值分解(SVD),我们将原始数据(如图像)转换成了一种更加紧凑的表示形式。这种转换依赖于数据内部的结构和相关性,以及数据中信息的不均匀分布。

让我们简单分析一下这个过程为何能减少所需的数据量:

数据的结构和相关性

  1. 高度相关的数据:图像数据往往包含大量的空间相关性,即图像中相邻的像素点在颜色和亮度上通常非常接近。这种高度的相关性意味着原始图像可以通过更少的信息来近似表示,而不是独立地存储每一个像素的值。

  2. 信息的不均匀分布:在图像中,并不是所有像素都同等重要。某些区域(如图像中的边缘或纹理)包含了更多的视觉信息,而其他区域(如单一背景)的信息量较少。SVD正是利用了这种不均匀的信息分布,通过优先保留那些信息量大的成分,而忽略那些信息量小的成分,来实现数据压缩。

SVD压缩的工作原理

通过奇异值分解,图像被分解为三个矩阵((U), (\Sigma), (V^T)),其中包含了所有原始数据的信息。但是,我们可以选择只保留前(r)个最大的奇异值及其对应的向量,这样就能用较少的数据来近似原始图像。具体来说:

  • 奇异值((\Sigma)):表示数据中的信息量,大的奇异值对应于数据中的主要特征。通过只保留前(r)个最大的奇异值,我们实际上保留了图像中的主要信息。

  • 左奇异向量((U))和右奇异向量((V^T)):分别代表了图像行和列的基向量。保留前(r)个奇异值意味着我们只需要这些向量的一个子集。

为什么SVD比直接存储像素点节省空间?

直接使用像素点表示图像,我们需要为图像中的每个像素存储一个值(在灰度图像中)或三个值(在彩色图像中)。这种表示方法没有考虑像素之间的相关性和信息的重要性差异。

使用SVD后,我们仅通过三个矩阵((U_r), (\Sigma_r), (V_r^T))的乘积来近似表示原始图像。这三个矩阵的大小小于原始图像矩阵的大小,特别是当(r)远小于图像的原始维度时。因此,需要存储的数据量减少了,这就实现了数据压缩。

综上所述,虽然初始看起来每个像素直接存储似乎更简单、更直接,但通过利用图像数据的内在结构和信息分布的不均匀性,SVD提供了一种更为高效的数据表示方法。通过仅保留最重要的数据成分,它能够以更小的数据量来近似原始图像,从而达到数据压缩的目的。

MATLAB代码

clc;
clearvars;
close all;
% A_org=double(imread("lena.bmp"));
A_org=double(imread("lena256.bmp"));
[m_org,n_org]=size(A_org);
disp("原始图像像素个数:");
org_size=m_org*n_org;
disp(org_size);compr=uint8(m_org*0.11);
[U_red ,S_red , V_red,A_red]  = svd_compress( A_org, compr );[m_U,n_U]=size(U_red);
U_size=m_U*n_U;[m_S,n_S]=size(S_red);
S_size=m_S*n_S;[m_V,n_V]=size(V_red);
V_size=m_V*n_V;red_size=U_size+S_size+V_size;
disp("压缩后像素个数:");
disp(red_size);disp("压缩比例:");
disp(red_size/org_size);[m_red,n_red]=size(A_red);
disp("压缩后原始图像像素个数");
disp(m_red*n_red);disp("PSNR:");
my_psnr=psnr(uint8(A_org),uint8(A_red));
disp(my_psnr);function [ U_red ,S_red , V_red,A_red ] = svd_compress( A_org, compr )% svd_compress compresses an input matrix (e.g. an image) using the
% Singular Value Decomposition (SVD).
%   Input args: A_org: Any matrix with double real entries, e.g. an image 
%   file (converted from uint8 to double).
%   compr: Quality of compression. If 0 <= compr < 1, it only keeps
%   Singular Values (SVs) larger than compr times the biggest SV. If 1 <= 
%   compr <= number of SVs, it keeps the biggest compr SVs. Otherwise the 
%   function returns an error.
%   Output args: A_red: Compressed version of A_org in double using the
%   SVD, e.g. an image file (convert from double to uint8).% SVD on the original matrix
[U,S,V] = svd(A_org);% Extract Singular Values (SVs)
singvals = diag(S);% Determine SVs to be saved
if compr >= 0 && compr < 1% only SVs bigger than compr times biggest SVindices = find(singvals >= compr * singvals(1));
elseif compr >= 1 && compr <= length(singvals)% only the biggest compr SVsindices = 1:compr;
else% return errorerror('Incorrect input arg: compr must satisfy 0 <= compr <= number of Singular Values');
end% Truncate U,S,V
U_red = U(:,indices);
S_red = S(indices,indices);
V_red = V(:,indices);% Calculate compressed matrix
A_red = U_red * S_red * V_red';end

运行结果

在这里插入图片描述

SVD参考代码

https://github.com/matzewolf/Image_compression_SVD/blob/master/svd_compress.m

这篇关于使用SVD将图像压缩四分之一(MATLAB)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/880222

相关文章

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue

如何合理使用Spring的事务方式

《如何合理使用Spring的事务方式》:本文主要介绍如何合理使用Spring的事务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、底层构造1.1.事务管理器1.2.事务定义信息1.3.事务状态1.4.联系1.2、特点1.3、原理2. Sprin

Vue中插槽slot的使用示例详解

《Vue中插槽slot的使用示例详解》:本文主要介绍Vue中插槽slot的使用示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、插槽是什么二、插槽分类2.1 匿名插槽2.2 具名插槽2.3 作用域插槽三、插槽的基本使用3.1 匿名插槽

使用WPF实现窗口抖动动画效果

《使用WPF实现窗口抖动动画效果》在用户界面设计中,适当的动画反馈可以提升用户体验,尤其是在错误提示、操作失败等场景下,窗口抖动作为一种常见且直观的视觉反馈方式,常用于提醒用户注意当前状态,本文将详细... 目录前言实现思路概述核心代码实现1、 获取目标窗口2、初始化基础位置值3、创建抖动动画4、动画完成后

PyQt5 QDate类的具体使用

《PyQt5QDate类的具体使用》QDate是PyQt5中处理日期的核心类,本文主要介绍了PyQt5QDate类的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录核心功能常用方法及代码示例​1. 创建日期对象​2. 获取日期信息​3. 日期计算与比较​4. 日

Go语言使用slices包轻松实现排序功能

《Go语言使用slices包轻松实现排序功能》在Go语言开发中,对数据进行排序是常见的需求,Go1.18版本引入的slices包提供了简洁高效的排序解决方案,支持内置类型和用户自定义类型的排序操作,本... 目录一、内置类型排序:字符串与整数的应用1. 字符串切片排序2. 整数切片排序二、检查切片排序状态:

使用Java将实体类转换为JSON并输出到控制台的完整过程

《使用Java将实体类转换为JSON并输出到控制台的完整过程》在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用JSON格式,用Java将实体类转换为J... 在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用j

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

Python logging模块使用示例详解

《Pythonlogging模块使用示例详解》Python的logging模块是一个灵活且强大的日志记录工具,广泛应用于应用程序的调试、运行监控和问题排查,下面给大家介绍Pythonlogging模... 目录一、为什么使用 logging 模块?二、核心组件三、日志级别四、基本使用步骤五、快速配置(bas

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs