CFI查询(二)

2024-04-06 05:08
文章标签 查询 cfi

本文主要是介绍CFI查询(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、上一篇说到了genprobe_new_chip函数,这一篇接着

static int genprobe_new_chip(struct map_info *map, struct chip_probe *cp,
    struct cfi_private *cfi)
{
switch (map->buswidth) {
#ifdef CFIDEV_BUSWIDTH_1 总线宽度1字节
case CFIDEV_BUSWIDTH_1:
cfi->interleave = CFIDEV_INTERLEAVE_1;


cfi->device_type = CFI_DEVICETYPE_X8;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;


cfi->device_type = CFI_DEVICETYPE_X16;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;
break;
#endif /* CFIDEV_BUSWITDH_1 */


#ifdef CFIDEV_BUSWIDTH_2
case CFIDEV_BUSWIDTH_2: 总线宽度2字节
#ifdef CFIDEV_INTERLEAVE_1
cfi->interleave = CFIDEV_INTERLEAVE_1;


cfi->device_type = CFI_DEVICETYPE_X16;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;
#endif /* CFIDEV_INTERLEAVE_1 */
#ifdef CFIDEV_INTERLEAVE_2
cfi->interleave = CFIDEV_INTERLEAVE_2;


cfi->device_type = CFI_DEVICETYPE_X8;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;


cfi->device_type = CFI_DEVICETYPE_X16;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;
#endif /* CFIDEV_INTERLEAVE_2 */
break;
#endif /* CFIDEV_BUSWIDTH_2 */


#ifdef CFIDEV_BUSWIDTH_4 总线宽度为4字节
case CFIDEV_BUSWIDTH_4:
#if defined(
CFIDEV_INTERLEAVE_1  一片) && defined(SOMEONE_ACTUALLY_MAKES_THESE)
                cfi->interleave = CFIDEV_INTERLEAVE_1;


                cfi->device_type = CFI_DEVICETYPE_X32;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;
#endif /* CFIDEV_INTERLEAVE_1 */
#ifdef
CFIDEV_INTERLEAVE_2 两片
cfi->interleave = CFIDEV_INTERLEAVE_2;


#ifdef SOMEONE_ACTUALLY_MAKES_THESE
cfi->device_type = CFI_DEVICETYPE_X32;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;
#endif
cfi->device_type = CFI_DEVICETYPE_X16;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;


cfi->device_type = CFI_DEVICETYPE_X8;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;
#endif /* CFIDEV_INTERLEAVE_2 */
#ifdef CFIDEV_INTERLEAVE_4 四片同样是四片,究竟是4片8位芯片并列,4片16位芯片并列,还是4片32为芯片并列?这里采用试探的办法。
cfi->interleave = CFIDEV_INTERLEAVE_4;


#ifdef SOMEONE_ACTUALLY_MAKES_THESE
cfi->device_type = CFI_DEVICETYPE_X32;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;
#endif
cfi->device_type = CFI_DEVICETYPE_X16;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;


cfi->device_type = CFI_DEVICETYPE_X8;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;
#endif /* CFIDEV_INTERLEAVE_4 */
break;
#endif /* CFIDEV_BUSWIDTH_4 */


#ifdef CFIDEV_BUSWIDTH_8
case CFIDEV_BUSWIDTH_8:
#if defined(CFIDEV_INTERLEAVE_2) && defined(SOMEONE_ACTUALLY_MAKES_THESE)
                cfi->interleave = CFIDEV_INTERLEAVE_2;


                cfi->device_type = CFI_DEVICETYPE_X32;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;
#endif /* CFIDEV_INTERLEAVE_2 */
#ifdef CFIDEV_INTERLEAVE_4
cfi->interleave = CFIDEV_INTERLEAVE_4;


#ifdef SOMEONE_ACTUALLY_MAKES_THESE
cfi->device_type = CFI_DEVICETYPE_X32;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;
#endif
cfi->device_type = CFI_DEVICETYPE_X16;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;
#endif /* CFIDEV_INTERLEAVE_4 */
#ifdef CFIDEV_INTERLEAVE_8
cfi->interleave = CFIDEV_INTERLEAVE_8;


cfi->device_type = CFI_DEVICETYPE_X16;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;


cfi->device_type = CFI_DEVICETYPE_X8;
if (cp->probe_chip(map, 0, NULL, cfi))
return 1;
#endif /* CFIDEV_INTERLEAVE_8 */
break;
#endif /* CFIDEV_BUSWIDTH_8 */


default:
printk(KERN_WARNING "genprobe_new_chip called with unsupported buswidth %d\n", map->buswidth);
return 0;
}
return 0;
}

通过此函数检测内存个板块中的闪存芯片。这是个很大的函数,因为要为不同的数据总线宽度(4字节、2字节、1字节)以及芯片宽度分别提供代码。

这里我们假定访问内存芯片时数据宽度为4字节,但是,就具体芯片而言,其数据宽度却未必是32位,所以实际上可能需要有若干芯片并列凑成所需的数据宽度。例如:可以采用4个8位芯片并列,也可以采用2个16位芯片并列,当然,也可以采用单个32为芯片。

2、通过前面的分析可以知道,主要的试探函数是调用cp->probe_chip(map, 0, NULL, cfi);这个函数又是在哪里被赋值?它的真正面目又是什么?

通过下面这个结构体,便可得出答案:

static struct chip_probe cfi_chip_probe = {
name: "CFI",
probe_chip: cfi_probe_chip
};

下一篇对这个函数进行说明。


这篇关于CFI查询(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/879068

相关文章

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员

Linux查询服务器 IP 地址的命令详解

《Linux查询服务器IP地址的命令详解》在服务器管理和网络运维中,快速准确地获取服务器的IP地址是一项基本但至关重要的技能,下面我们来看看Linux中查询服务器IP的相关命令使用吧... 目录一、hostname 命令:简单高效的 IP 查询工具命令详解实际应用技巧注意事项二、ip 命令:新一代网络配置全

Linux查询服务器系统版本号的多种方法

《Linux查询服务器系统版本号的多种方法》在Linux系统管理和维护工作中,了解当前操作系统的版本信息是最基础也是最重要的操作之一,系统版本不仅关系到软件兼容性、安全更新策略,还直接影响到故障排查和... 目录一、引言:系统版本查询的重要性二、基础命令解析:cat /etc/Centos-release详

MySQL慢查询工具的使用小结

《MySQL慢查询工具的使用小结》使用MySQL的慢查询工具可以帮助开发者识别和优化性能不佳的SQL查询,本文就来介绍一下MySQL的慢查询工具,具有一定的参考价值,感兴趣的可以了解一下... 目录一、启用慢查询日志1.1 编辑mysql配置文件1.2 重启MySQL服务二、配置动态参数(可选)三、分析慢查

MyBatis流式查询两种实现方式

《MyBatis流式查询两种实现方式》本文详解MyBatis流式查询,通过ResultHandler和Cursor实现边读边处理,避免内存溢出,ResultHandler逐条回调,Cursor支持迭代... 目录MyBATis 流式查询详解:ResultHandler 与 Cursor1. 什么是流式查询?

Java慢查询排查与性能调优完整实战指南

《Java慢查询排查与性能调优完整实战指南》Java调优是一个广泛的话题,它涵盖了代码优化、内存管理、并发处理等多个方面,:本文主要介绍Java慢查询排查与性能调优的相关资料,文中通过代码介绍的非... 目录1. 事故全景:从告警到定位1.1 事故时间线1.2 关键指标异常1.3 排查工具链2. 深度剖析: